Рефераты. Система автоматического регулирования напряжения сварочной дуги


17) Напряжение сварочной дуги Uд зависит от тока сварочной дуги Iд, а также от сопротивления сварочной дуги Rд . Напряжение сварочной дуги Uд пропорционально каждой из переменных Iд и Rд ,т.е. пропорционально их произведению:



где К18- коэффициент пропорциональности



18) Напряжение снимаемое с диагонали диодного моста пропорционально Uд.м напряжению сварочной дуги Uд



где К19- коэффициент пропорциональности



19) Уравнение связи тока возбуждения генератора I2 с напряжением возбуждения Uд.м аналогично уравнению в п.2 для тока возбуждения генератора:



где К10 и К11 - соответственно индуктивность и активное сопротивление обмотки возбуждения генератора.


,


20) Связь потока возбуждения генератора Ф2 с током возбуждения I2 выразим аналогично п. 3 в виде кривой намагничивания стали в статоре генератора:



21) Напряжение на выходе трансформатора Uт пропорционально напряжению сети Uс



где К22- коэффициент трансформации



22) Напряжение в потенциометре UR пропорционально напряжению диодного моста Uд.м



где К23- коэффициент пропорциональности



5. Линеаризация системы дифференциальных уравнений


Дифференциальные уравнения могут быть как линейные, так и нелинейными. Нелинейные дифференциальные уравнения вносят значительные затруднения в решение реальных задач, особенно в тех случаях, когда они имеют высокий порядок. Поэтому очень часто стараются заменить в первом приближении нелинейное дифференциальное уравнение линейным, анализ которого выполняется значительно проще. Методика выполнения такой замены называется линеаризацией.

Линеаризация системы дифференциальных уравнений САУ основана на двух предложениях.

1.       Предполагается, что при номинальной работе системы отклонения внешних воздействий от их постоянных номинальных значений малы, а следовательно, малы и отклонения всех переменных в системе.

Однако, необходимо отметить, что это предположение выполняется далеко не всегда.

2.       Все функции от переменных, входящих в данное уравнение, не имеют разрывов и являются гладкими при номинальных значениях аргументов. Другими словами, предполагается, что для каждой функции существуют первые производные по всем аргументам в точке, соответствующей номинальному режиму. В противоположном случае, если хотя бы одна из функций, входящих в уравнения, имеет разрыв в точке номинального режима, либо не является гладкой в этой точке, то такое уравнение, а также сама функция называются существенно нелинейными. Линеаризация таких уравнений и функции невозможна.

Номинальные значения переменных обозначаются большими буквам с верхним нулевым индексом:

X(t)= X0= const, U(t)= U0= const и т.д


Отклонения переменных обозначаются соответствующими маленькими буквами:

x(t)=X(t) – X0 и т.д


Очевидно, что в номинальном режиме отклонения всех переменных в системе, а также производные отклонений по времени равны нулю.

Дифференциальное уравнение является линейным, если функция f1(…) и f2(…) в левой и правой частях являются линейными комбинациями переменных и их производных:



В частном случае, если функции f1(...) и f2(...) не содержат в качестве аргументов производных искомой функции и заданных функций, дифференциальное уравнение (1) превращается в обычную функцию определяющую зависимость переменной X(t) в какой-либо момент от мгновенных значений аргументов Y(t), ..., Z(t) в тот же момент:


                      (3)


Такой вид математической модели означает, что моделируемый объект рассматривается как статический (безинерционный). САР напряжение сварочной дуги-это статическая система, так как всегда будет присутствовать ошибка регулируемого параметра, в силу нелинейной зависимости числа оборотов двигателя от величины магнитного потока возбуждающей компенсирующей обмотке 2.

Аналитическая запись линейной функции содержит только суммы аргументов, умноженных, быть может, на постоянные коэффициенты



Если функция имеет только один аргумент, то она может быть задана в виде графика. График линейной функции имеет вид прямой линии, проходящей через начало координат:



Заметим, что если график, имеющий вид прямой линии, не проходит через начало координат, то соответствующая ему функция не является линейной. Вернемся к системе уравнений САР напряжение сварочной дуги. Очевидно, что в этой системе линейными являются уравнения в пп. 2,4,6,8,11,12,14,15,16,18,19,20,21,22. К нелинейным относятся уравнения в пп. 1,3,5,7,9,10,13,17.

В общем случае линеаризация заключается в разложении функции в ряд Тейлора в окрестности номинальных значений аргументов и отбрасывании членов ряда, порядок которого выше первого.

При проведении линеаризации конкретной функции необходимо внимательно относится к номинальным значениям переменных, отмечая те из них, которые равны нулю в установившемся режиме работы данной САР. Если номинальные значения некоторых переменных равны нулю, то могут обратиться в нуль коэффициенты при отдельных аргументах в выражении линеаризованной функции. Такие аргументы необходимо отбросить.

Для тех дифференциальных уравнений и функций исходной модели САР, которые являются линейными, переход к отклонениям сводится к замене обозначений полных переменных на обозначения их отклонений.

Итак, линеаризованная система уравнений имеет вид:

1)       Для линеаризации зависимости напряжения подаваемого на компенсационную обмотку генератора U1 от задающего напряжения Uз и перемещения ручки потенциометра Х, необходимо найти частные производные U1 по переменным Uз и Х в точках номинальрого режима



Линеаризированная зависимость примет вид:


2)


3)       Зависимость магнитного потока возбуждения Ф1 генератора от величины тока возбуждения I1 задана графически. Отметив на графике точку номинального режима и проведя касательную к графику в этой точке, получим линеаризованную зависимость магнитного потока от тока в отклонениях.


Тангенс угла наклона к оси i1 обозначим К5. Линеаризованная зависимость примет вид


4)


5) Для линеаризации зависимости напряжения на щетках якоря генератора Uя от величины магнитного потока возбуждения Ф и скорости привода генератора Wг необходимо найти частные производные Uя. по переменным Ф и Wг в точке номинального режима:



Линеаризованная зависимость:


6)


7) Линеаризация зависимости вращающего момента на валу двигателя Мдв от тока якоря Iдв и величина потока возбуждения Фв, аналогична линеаризации уравнения п. 1, 5. Линеаризованная зависимость:


8)


9) Линеаризация зависимости скорости вращения якоря двигателя Wдв в магнитном потоке возбуждения Фв от противо-ЭДС Е проводится аналогично пп.1,5,7:



10) Линеаризация графически заданной величины магнитного потока возбуждения двигателя Фвд от тока возбуждения проводится аналогично пп. 3



11) Линеаризация уравнение связи тока возбуждения двигателя Iв с напряжением возбуждения Uв



12) Линеаризация скорость подачи электрода Vп от скорости двигателя Wдв



13) Линеаризация зависимость сопротивления сварочной дуги Rд и тока сварочной дуги Iд от напряжения трансформатора Uт аналогична п.1,5,7,9.

Пусть ,тогда исходное дифференциальное уравнение примет вид:



Линеаризованная зависимость примет вид:


14)


15) Линеаризованная зависимость величины зазора между электродом и подложкой L от суммарной скорости подачи электрода Vп и скорости сгорания подложки Vс


16)


17) Линеаризация напряжение сварочной дуги Uд от тока сварочной дуги Iд, а также от сопротивления сварочной дуги Rд аналогично пп. 1,5,7,9,13:


18)


19) Линеаризация уравнения связи тока возбуждения генератора I2 с напряжением потенциометра UR аналогично уравнению в п.2 для тока возбуждения генератора:



20) Линеаризация графически заданной величины магнитного потока возбуждения двигателя Ф2 от тока возбуждения проводится аналогично п. 3, 10:


21) 

22) 


6. Взвешенный сигнальный граф и структурная схема линейной математической модели САР


Для определения закона изменения во времени данной выходной величины необходимо исключить из системы уравнений все остальные переменные, являющиеся в данном случае промежуточными, и получить дифференциальное уравнение, связывающее рассматриваемую выходную переменную с входной, представленной заданной функцией времени в правой части уравнения.

Операции исключения промежуточных переменных из сложных дифференциальных уравнений очень трудоемки и громоздки. Поэтому возникает потребность упростить эти операции. С этой целью в линейных математических моделях САУ обычно используют операционную форму записи линейных дифференциальных уравнений, представляя уравнение каждой связи сигнального графа в виде так называемой передаточной функции.

Замена дифференциальных уравнений передаточными функциями позволяет представить систему линейных дифференциальных уравнений САУ в виде взвешенного сигнального графа, либо в виде структурной схемы.

Существенным ограничением на применение передаточных функций при исследовании линейных САУ является то обстоятельство, что передаточная функция линейного дифференциального уравнения ставит в соответствие каждой конкретной функции в правой части (входному сигналу) одно решение дифференциального уравнения, удовлетворяющее нулевым начальным условиям.

Для перехода к операторной форме записи необходимо оператор дифференциального уравнения d/dt заменить символом p, с которым в дальнейшем можно поступать как с сомножителем.

В операторной форме записи дифференциальное уравнение


примет вид


Вынеся переменные x(t)и y(t) за скобки в левой и правой частях, получим операторную форму дифференциального уравнения:



По своей форме это уравнение является алгебраическим, а не дифференциальным. Разрешим его относительно искомой переменной x(t), разделив обе части ни сомножитель

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.