Рефераты. Разработка блока управления фотоприёмником для волоконно-оптических систем передачи информации

Чтобы изменить масштаб, используйте команды: Увеличить масштаб (Ctrl++) и Уменьшить масштаб (Ctrl+-).

После того, как Вы создали схему, ее можно сохранить, используя команды меню Файл.

Группы элементов: Основные, Источники и Активные элементы (линейные модели).

Основная группа включает:

– Резистор. Параметры: сопротивление(R) в Омах;

– Индуктивность. Параметры: индуктивность(L) в Гн; начальные условия (НУ) в А;

– Конденсатор. Параметры: емкость(C) в Ф; начальные условия(НУ) в В;

– Унистор. Параметры: крутизна(S) в См;

– Идеальный трансформатор. Параметры: коэффициент трансформации (n);

– Соединитель. Для соединения более двух проводов вместе;

– «Земля». Для обозначения нулевого узла. Вы должны присоединить «Землю» к схеме, чтобы выполнить анализ.

Группа источников включает:

– Источник напряжения. Параметры: Тип источника – постоянный, гармонический или меандр.

В зависимости от типа источника доступны различные параметры:

а) Для постоянного: напряжение(U0) в В;

б) Для гармонического: амплитуда(U0) в В; частота(f) в Гц; начальная фаза(phi0) в градусах; Время окончания радиоимпульса в сек (по выбору).

в) Для меандра: частота (f) в Гц; длительность в%; напряжение (U0) в В; смещение в В.

– Источник тока. Параметры: Тип источника – постоянный или гармонический. В зависимости от типа источника доступны различные параметры. Для постоянного: ток (I0) в А. Для гармонического: амплитуда (I0) в А; частота (f) в Гц; начальная фаза (phi0) в градусах; Время окончания радиоимпульса в сек (по выбору).

– Источник тока управляемый напряжением (ИТУН). Параметры: проводимость(g) в См;

– Источник напряжения управляемый напряжением (ИНУН). Параметры: коэффициент управления (k) в В/В;

– Источник тока управляемый током (ИТУТ). Параметры: коэффициент управления(h) в А/А;

– Источник напряжения управляемый током (ИНУТ). Параметры: сопротивление (r) в Омах;

– Гиратор. Параметры: крутизна (Sg) в См.

Группа активных элементов включает:

а) Лампа. Параметры: крутизна (S) в См; внутреннее сопротивление(Ri) в Омах;

б) Биполярный транзистор n-p-n типа. Параметры: коэффициент передачи тока (alpha); омическое сопротивление эмиттера(Re); омическое сопротивление коллектора (Rc); омическое сопротивление базы (Rb);

в) Идеальный операционный усилитель (ОУ). Параметры: коэффициент усиления (k) в В/В.

Для всех элементов, кроме резистора, за положительное направление отсчета тока принимается направление от узла с большим номером к узлу с меньшим номером.

Для всех элементов за положительное направление отсчета напряжения принимается направление от узла с меньшим номером к узлу с большим номером.

Замечание. Принимается, что нулевой узел имеет наибольший номер.

Программа показывает сообщение об ошибке в следующих случаях:

– «Схема физически некорректна», если Ваша схема некорректна (например, 2 источника тока, 2 индуктивности или индуктивность и источник тока, соединенные последовательно);

– «Ошибка: Источник напряжения соединен параллельно с конденсатором»;

– «Ошибка: 2 источника напряжения соединены параллельно»;

– «Ошибка: 2 конденсатора соединены параллельно», если соединить параллельно 2 источника напряжения, 2 конденсатора или конденсатор и источник напряжения;

– "…: элемент закорочен», если элемент закорочен. Так как он не влияет на токи или напряжения в цепи, его следует убрать;

– "…: элемент не соединен», если элемент разомкнут. Вы можете избежать этого сообщения, присоединив выводы элемента к Соединителям, но только в том случае, если это будет физически корректно (так можно сделать с резистором, но нельзя с индуктивностью);

– «Добавьте землю к Вашей схеме.», если в схеме нет земли. Вы должны присоединить землю к схеме, чтобы выполнить анализ.



5. Конструктивная разработка фотоприемного устройства


Разработка конструкции ФПУ проводилась с целью получения требуемых технических характеристик устройства самым целесообразным способом с точки зрения техники и экономики.

В результате выбрана следующая конструкция: устройство размещается во фрезерованном латунном корпусе размерами 70×55×30 мм, что обеспечивает прочность конструкции, надежную экранировку от помех и наводок, играет роль теплоотвода.

На современном этапе развития РЭА монтируют на печатных платах, что дает возможность механизировать и автоматизировать процесс сборки РЭА, повышает ее надежность, облегчает ремонт, обеспечивает повторяемость монтажа от образца к образцу.

Электрическая схема размещается на плате, которая изготавливается из листового электроизоляционного материала с наклеенной с одной стороны медной фольгой.

Процесс выделения токоведущих проводников осуществляется путем травления в специальных растворах. Необходимая топология печатной платы задается рисунком лакового слоя, наносимого на фольгу и предохраняющая отдельные ее участки (будущие токоведущие дорожки) от соприкосновения с реагентом.

Схема выполняется по гибридно-пленочной технологии.

Сопротивления напыляются, а полупроводниковые приборы и емкости выполняются навесными. Для изоляционного основания выберем стеклотекстолит, как достаточно прочный в механическом плане и имеющий низкую проводимость в электрическом плане материал.

Толщина платы 2,5 мм, что достаточно для получения механической жесткости готовой печатной платы и ее размеров. Диаметр отверстий в печатной плате должен быть больше диаметра вставляемого в него вывода радио детали, что обеспечивает возможность свободной установки радио элементов. Отверстия на плате располагаются таким образом, чтобы расстояние между краями отверстий было не менее толщины платы. Иначе эта перемычка не будет иметь достаточной механической прочности. Контактные площадки, к которым будут припаиваться выводы высокочастотных транзисторов, необходимо делать прямоугольными.

Разводка печатных проводников делается таким образом, чтобы они имели минимальную длину. При разработке усилителя, работающего на частотах выше 100 МГц необходимо предусматривать максимальное удаление друг от друга входных и выходных радиоэлементов. Такая технология изготовления позволяет снизить трудоемкость сборки усилителя, повысить срок службы.

Фотодиод и высокочастотные контакты находятся в уплотнительных отверстиях в стенках корпуса.

Готовая печатная плата устанавливается в корпусе, который наглухо закрывается жестяной крышкой. Стык пропаивается, что обеспечивает надежную защиту от наводок и помех. На этом корпусе также установлен проходной конденсатор, обеспечивающий ввод в конструкцию питающего напряжения.



6. Безопасность жизни и деятельности человека


6.1 Анализ условий труда


Лаборатория, используемая для выполнения дипломного проекта, находится на 4 этаже 5 этажного здания и имеет размеры 8×6×4 м. В помещении установлены 5 ПЭВМ и лазерный принтер.

Количество работающих: 3 разработчика и 2 оператора ЭВМ. Используемое электропитание лаборатории: электросеть трехфазная четырехпроводная напряжением 380/220В с глухозаземленной нейтралью, переменного тока частотой 50Гц.

Площадь помещения составляет 48 м2, объем – 192 м3. При этом, на каждое рабочее место с ПЭВМ приходится 9.6 м2 площади и 38.4 м3 объема, что соответствует нормам ДНАОП 0.00–1.31–99, 6 м2 и 20 м3 соответственно.

Помещение, с находящимся в нем оборудованием и персоналом, представляет собой систему «человек – машина – среда» (ЧМС). Элементы системы ЧМС условно разделены на функциональные части, согласно тем действиям либо операциям, которые они выполняют.

Выделим систему «Человек-Машина-Среда» (ЧМС), ограниченную помещением лаборатории, элементами которой являются:

«Человек» – 5 работающих -3 разработчика и 2 оператора ЭВМ;

«Машина» – 5 ПЭВМ, в состав одной из которых входит принтер, находящиеся в лаборатории;

«Среда» – производственная среда в помещении лаборатории.

Каждый элемент «человек», состоящий из 3 разработчиков и 2 операторов ЭВМ делится на три функциональные части:

– Ч1 – рассматривается как человек, управляющий машиной;

– Ч2 – человек, который рассматривается с точки зрения его воздействия на окружающую среду (за счет тепло- и влаговыделения, потребления кислорода и др.);

– Ч3 – человек, который рассматривается с точки зрения его психофизиологического состояния под воздействием факторов, влияющих на него в производственном процессе.

Элемент «машина» делится на три части:

М1 – выполняет основную технологическую функцию (воздействие на предмет труда);

М2 – выполняет функцию аварийной защиты;

М3 – служит источником вредных воздействий на человека и окружающую среду.

Элемент «среда» рассматривается с точки зрения изменений, которые возникают под воздействием внешних факторов (температура, влажность, шум, освещенность, и др.).

Структура системы «Ч-М-С» для рассматриваемого помещения представлена ниже на рис. 6.1. В таблице 6.1 приведены связи в системе «Ч-М-С».

Согласно ГОСТ 12.0.003–74 в данной системе «ЧМС» имеют место физические и психофизиологические опасные и вредные производственные факторы, биологические и химические факторы отсутствуют.

Физические ОВПФ:

-    повышенная или пониженная влажность воздуха, обусловленная источниками избыточного тепла в помещении (оборудование, люди, осветительные приборы), приводит к ощущению дискомфорта, ухудшению самочувствия оператора.

-    повышенная или пониженная температура воздуха рабочей зоны является причиной дискомфорта, снижается производительность труда;

-    повышенный уровень шума на рабочем месте, приводит к головной боли, ослаблению внимания, ощущению дискомфорта, а значит снижению производительности труда;

-    недостаток естественного света, обусловленный недостаточной площадью световых проемов, приводит к ухудшению зрения, уменьшению работоспособности человека;

-    недостаточная освещённость рабочей зоны, зависящая от системы освещения, вызывает быстрое утомление и снижает работоспособность человека;

-    повышенное значение напряжения в электрической цепи, замыкание которой может пройти через тело человека, может привести к поражению человека электрическим током;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.