Рефераты. Разработка блока управления фотоприёмником для волоконно-оптических систем передачи информации

Формула коэффициента шума показывает справедливость этих допущений.

Например, при Rг = 1 кОм (эквивалентное сопротивление нагрузки ФД по переменному току), более нежелательно из-за больших частотных искажений.

При fв ≥ 400МГц необходимо использовать СВЧ транзистор 2Т3114В-6, у которого р ≈ 4,7ГГц при Iк = 2мА


,


где

r’б – сопротивление тела базы;

r б’э – сопротивление базы-эмиттер;

h21э – 100;

r’б – 5 Ом (для транзистора 2Т382А);

Rг=R1‌‌‌‌‌||R2||R4≈1кОм;

rб’э=26/Iк·h21.

При токе Iк=2мА, h21э=100, r’б=10 Ом.

При этих данных rб’э=1,3кОм; F=1,45 эквивалентный шумовой ток, учитывающий R транзистора, равен


 для f=1МГц


При минимизации собственных шумов ФПУ и максимизации динамического диапазона к построению электрической принципиальной схемы ФПУ и выбору режимов транзисторов его каскадов, особенно выходных, предъявляются противоречивые требования.

Во-первых, транзисторы выбираются СВЧ диапазона, например 2Т3114В-6, маломощные, с fгр≥4 ГГц.

Ток покоя входного каскада нами уже выбран из условия минимизации шумов.

Транзистор 2Т3114В-6 имеет следующие параметры:

Pк доп = 25 мВт;                      

Iк доп = 15 мА;                         

Uк доп = 5 В;                  

fг= 4,7 ГГц;

h21= 100;

Cк = 0,4 пФ;

rрасч = 6 нс.

Чтобы совместить эти противоречивые требования (минимальные шумы, максимальный частотный и динамический диапазон), входной каскад выполняется по схеме эмиттерного повторителя, который обладает этими свойствами.

Второй каскад для обеспечения заданного частотного и динамического диапазонов выполняется по каскадной схеме с местной обратной связью (ОС). В качестве 2-го и 3-го каскадов используется СВЧ микросхема типа М 45121–2.

Наличие во втором каскаде ФПУ обратной связи увеличивает особенно динамический диапазон, а также и частотный, при этом не ухудшаются шумовые свойства ФПУ, так как первый каскад создает требуемое усиление по мощности.

Это же позволяет ток покоя каскадной схемы выбрать достаточно большим, что в свою очередь увеличивает глубину обратной связи и тем самым уменьшает нелинейные и частотные искажения.

Электрические параметры микросхемы приведены в табл. 3.1.


Таблица 3.1 – Электрические параметры микросхемы

Параметры, единицы измерения

Норма

Не менее

Не более

1. Верхняя частота рабочего диапазона, МГц

1000

-

2. Коэффициент шума в режиме преобразования, дБ

-

10

3. Верхняя граница линейности АЧХ по сжатию Кр на 1дБ, мВт

0,1

-

4. Развязка между каналами, дБ

30

-

5. Коэффициент передачи по мо – щности в режиме усиления, дБ

-

5

6. Допустимая входная мощность, мВт

-

5

7. Минимальная наработка, час

25000

-

8. 90 – процентный ресурс, час

40000

-

9. Масса, г

-

1,5


3.2 Выходной каскад

Выходной каскад для согласования с внешней нагрузкой выполнен по схеме эмиттерного повторителя. При этом Rн=50 Ом и ток покоя выбирается достаточно большим.

В качестве выходного транзистора VT2 можно использовать тот же транзистор, что и в предварительном усилителе: 2Т3114В-6.

Учет всех этих рекомендаций позволил реализовать схему ФПУ, которая изображена на рис. 3.2 и 3.3.

Первые три транзистора охвачены общей отрицательной обратной связью (ОООС), что позволяет увеличить частотный и динамический диапазоны без ухудшения чувствительности.

Анализ принципиальной схемы ФПУ показывает, что использование в качестве входного каскада эмиттерного повторителя позволяет решить одновременно много задач:

– уменьшить нелинейные искажения входного каскада;

– увеличить его частотный диапазон;

– уменьшить нелинейные искажения второго каскада путем увеличения глубины местной ОС за счет малого выходного сопротивления эмиттерного повторителя.

Все это не ухудшает чувствительности ФПУ, так как входной каскад в h21 раза усиливает мощность сигнала.

Определим граничную частоту усиления ФПУ


U2(p) = τ1(pK(p) = Јф·Zвх·F·K(p),


где

U2(p) – напряжение на входе ФПУ;

U1(p) – напряжение на нагрузке ФД, т.е. комплексном сопротивлении по переменному току, действующему между базой входного транзистора и общим проводом;

К(р) – общий коэффициент усиления всех каскадов ФПУ, кроме выходного;

Јф – фототок сигнала;

Zвх – входное сопротивление ФПУ при действии общей ОС, охватывающей первые два каскада.

В нашем случае К(р) = К1(рК2(р) ≈ КК2 ≈ К2, так как К1 = 1 и усиление этих каскадов можно считать в нашем частотном диапазоне постоянным.


Тогда, при Zвх,F = Zвх,         Fкз = 1, Fхх = 1+КВ(р),

где В(р) =; = Rг·Свх; Zвх = ;


получим


1 + B0K = F0,       ,      K2 = 4


Частота верхнего среза для входных каскадов ФПУ (первого и второго) при действии общей ООС равна


,

,

.

 

ФПУ может быть выполнен и на дискретных транзисторах, по приведенной выше схемотехнике, но при этом должны использоваться транзисторы с    fг > (4÷5) ГГц.

Технология использования возможна гибридно-пленочная.

4. Расчет фотоприемного устройства

4.1 Расчет выходного усилителя

Расчет К – цепи по постоянному току включает выбор режимов транзисторов и расчет сопротивлений резисторов, обеспечивающих выбранные режимы и их стабильность. При этом мощности, потребляемые, от источников питания и сигнала должны быть минимальными.

Режим работы транзистора, определяемый положением исходной рабочей точки (точки покоя) на выходных характеристиках транзистора (рисунок 4.1), т.е. значениями тока покоя коллектора Iк к постоянной составляющей напряжения между коллектором и эмиттером Uк, должно быть таким, чтобы на внешней нагрузке обеспечивалось заданная (номинальная) мощность сигнала и параметры предельных режимов работы транзистора не превышали максимально допустимых значений.

Принимая во внимание потери мощности сигнала в выходной цепи, вносимые цепью обратной связи, выходной цепью транзистора, максимальное рабочее значение мощности, рассеиваемой на коллекторе транзистора составляет

Ркр макс < ik,

Рк доп = 100 мВт.

Определим режим работы выходного транзистора. Ток коллектора выходного транзистора был оговорен при выборе принципиальной схемы.

Для уменьшения нелинейных и частотных искажений ток покоя выбрали равным 10 мА исходя из того что

Rкр макс ≈ Uкэ·Iк,

где Uкэ – напряжение между коллектором и эмиттером ((5÷6) В).

Напряжение, гасимое на сопротивлении R19 находим, как разницу напряжения источника питания и падением напряжения на резисторе R20 и между коллектором и эмиттером.


=6,5 В,


Определим токи выходного каскада



где h21=среднее значение коэффициента усиления по току, ; Iд – ток протекаемый через делитель напряжения. Для достаточной стабильности режима транзистора Iд должен быть значительно больше Iб, обычно принимают Iд ≥ (5÷10) Iб

Пусть Iд = 10Iб, тогда


,

Iэ = 10·10-3 + 0,1· 10-3 = 10,1 (мА),

Iд = 10·0,1мА = 1 (мА).


Сопротивление резисторов делителя напряжения в цепи базы транзистора рассчитывается по формуле


Uб0 = Uбэ + Uэ0 = Uбэ + Iк · Rэ(21).


При использовании в усилителе кремниевых транзисторов, значения напряжений база – эмиттер можно принять равным:


Uбэ = 0,6В, тогда

,

.


По номиналам

R18 = 10 (кОм),

R19 = 1,1 (кОм).

Нелинейные искажения усилителя определяется выходным каскадом, ко входу которого приложено наибольшее напряжение сигнала, точнее нелинейностью характеристик транзистора этого каскада

R21 = Rвых = 50 (Ом).


4.2 Расчет предварительного усилителя (ПУ)


ПУ усиливает электрический сигнал, обеспечивая наибольшее отношение сигнал/шум. Основные требования, предъявляемые к ПУ – минимальные шумы, максимальный частотный и динамический диапазоны. Как уже рассматривалось ранее, для удовлетворения этих требований входной каскад выполнен по схеме эмиттерного повторителя, который обладает этими свойствами.

Второй и третий каскады для обеспечения заданного частотного и динамического диапазонов выполняются по каскодной схеме. Весь ПУ охвачен общей ООС, что позволяет увеличить частотный и динамический диапазоны без ухудшения чувствительности.

Проведем расчет каскадов усиления по постоянному току. Расчет К – цепи по постоянному току включает выбор режимов транзисторов микросборки и входного каскада, а также расчет сопротивлений резисторов, обеспечивающих выбранные режимы и их стабильность, при этом мощности потребляемые от источника питания и сигнала должны быть минимальными.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.