Рефераты. Проектирование оптимальных структур активных RC-фильтров

,                                                                                     (13)

                                            (14)


где  – относительный доверительный интервал решения экстремальной задачи.

Указанный доверительный интервал необходим вследствие того, что максимумы модулей функций чувствительности в общем случае не совпадают с определенной оптимальной точкой (12), а лишь находятся в ее окрестности [9].

Выражение (14) является интегральной оценкой, позволяющей произвести качественный анализ влияния площади усиления i-го ОУ на частотные свойства передаточных функций. Успешное решение экстремальных задач (8), (9) и (13) во многом зависит от специфики работы нестационарного устройства, диапазона изменения управляющих параметров и требований, предъявляемых к точности реализации.

Для визуальной оценки степени влияния параметров каждого ОУ по результатам проведенных исследований (13) строится набор диаграмм по каждому из выходов, из которых можно определить доминирующий активный элемент


                                                                                     (15)


Следует отметить, что функциональные зависимости коэффициента передачи ЦАП , масштабного усилителя  и постоянной времени интегратора  определяются дискретным моментом (интервалом) времени , поэтому функции (8), (9), (13) и соответствующие им системы ограничений (11) и (14), а также вектор оптимальных координат (12) яв-ляются значениями только двух параметров  и . Однако для примене-ния оптимизационных методов решения этих экстремальных задач, не свя-занных в общем случае с прямым перебором возможных комбинаций зна-чений параметров оптимизируемых функций, целесообразной оказывается приведенная выше форма представления указанных выражений.

Задача третьего этапа синтеза связана с введением в схему дополни-тельных компенсирующих контуров обратной связи. В качестве нулевого приближения при проверке результатов синтезированных схемных решений целесообразно взять допустимое значение отклонения АЧХ реализуемой реальной схемы с замороженными коэффициентами от идеализированной. Допустимый коридор отклонений АЧХ определяется допустимыми значениями отклонений коэффициентов полиномов числителя и знаменателя замороженной пере-даточной функции (в точке (12)) от идеальных.

Чувствительность модуля передаточной функции Ф к изменению  параметра можно представить следующим образом:

.


Представим замороженную передаточную функцию идеализированного устройства в следующем виде:


. (16)


Тогда допустимое значение отклонения АЧХ можно определить по формуле


,                (17)


где , ;  и  – допустимые отклонения значений коэффициентов полинома числителя и знаменателя передаточной функции (16);  – приведенная максимальная статическая погрешность умножающих ЦАП.

Значения  и  определяются допустимыми интервалами изменения элементов вектора отклонений, следующего из решения системной задачи.

Процедура синтеза низкочувствительной схемы заключается во введении в последнюю дополнительных компенсирующих контуров обратной связи и носит итерационный характер [8]:

-                   по оценкам, полученным на втором этапе синтеза, выбирается доминирующий активный элемент;

-                   для выбора предпочтительного варианта реализации компенсирующих контуров обратных связей производится поиск необходимого набора локальных передач, поиск производится по строке матрицы ; если необходимых передач нет, то последние ищутся по всей матрице, исключая элементы главной диагонали;

-                   для уменьшения влияния частотных свойств доминирующего ОУ на достижимый схемой частотный и динамический диапазоны в схему вводятся дополнительные компенсирующие контуры обратной связи и осуществляется ее параметрическая оптимизация;

-                   с целью проверки качества принятого в предыдущем пункте решения производится численное моделирование синтезируемой схемы в частотной области, например с помощью одного из современных пакетов программ;

-                   выход из алгоритма производится либо по достижении требуемых качеств проектируемого устройства (если они не удовлетворены, выбирается следующий по установленному ранжиру активный элемент), либо при исчерпывании всех степеней свободы схемы, количество которых определяется числом заземленных входов ОУ, при этом необходимо учитывать, что для обеспечения правильного режима работы схемы по постоянному току хотя бы один вход ОУ должен быть заземлен;

-                   с целью проверки качества синтезированных схемных решений производится численное моделирование синтезируемой схемы во временной области.

При получении неудовлетворительных результатов (невозможности достижения заданных требований к качеству проектируемого устройства) в исходной схеме, полученной на первом этапе синтеза, с целью перераспределения значений функций чувствительности необходимо выполнить иной выбор параметров базисных структур, после чего повторить приведенный выше алгоритм синтеза компенсирующих контуров обратных связей. Отмеченная ситуация, например, может возникнуть при синтезе компенсирующих контуров обратных связей, когда для достижения требуемого (достаточного) уровня компенсации влияния инерционных свойств i-го активного элемента на параметры схемы в дополнительном контуре обратной связи необходимо обеспечить большое усиление. Указанного можно достичь несколькими способами. В первом случае в схему вводится дополнительный усилитель, во втором в схеме выполняется иной выбор параметров базисных структур, который обеспечивает получение требуемых значений усиления в компенсирующих контурах схемы путем перераспределения усиления между ее функциональными узлами. В отличие от первого способа, второй не требует дополнительных аппаратных затрат.

Задача третьего этапа синтеза в части синтеза схемных решений не может быть полностью формализована – выбор предпочтительного варианта реализации компенсирующих контуров остается за проектировщиком.

Рассматриваемая задача может быть алгоритмизирована в виде некоторой экспертной системы, исходными данными для которой служат полный набор передаточных функций в символьном виде, полученных на первом этапе, и наборы оценок из второго этапа синтеза. Таким образом, в результате решения задачи последнего этапа проектирования возможно получить схемные решения, позволяющие создать схему с собственной компенсацией влияния частотных свойств активных элементов на ее параметры.

3. Пример синтеза структуры аналоговой части циклического фильтра Калмана – Бьюси


Исходными данными для синтеза схемы циклического фильтра Калмана – Бьюси (ФКБ) являются стартовая конфигурация его структурной схемы, значения коэффициентов усиления и времени функционирования на цикле .

Пусть необходимо производить измерения на интервале  и значение скорости изменения входного сигнала на входе ФКБ не превышает , а интенсивность сигнала типа белого шума определяется значением , причем . Следуя методике, изложенной в работе [4], зададим начальное значение ковариационной матрицы  следующим образом:


,                                       (18)


где  – некоторый коэффициент пропорциональности. Тогда значения коэффициентов усиления [4], определяемые решениями матричного уравнения Риккати, будут иметь следующий вид:


,                                   (19)

.                          (20)


Дополнительные исследования показывают, что оптимальная точность фильтра достигается в случае, если функциональная зависимость этих коэффициентов для безразмерного времени q имеет вид, представленный на рис. 2.

Из уравнения Риккати [2] легко синтезируется исходная принципиальная схема фильтра рис. 3. На приведенной принципиальной схеме в начальном (некомпенсированном) варианте отсутствуют операционный усилитель А9 и резисторы R13–R17, номинал резистора , а неинвертирующие входы ОУ А2, А3 и А7 соединены с землей. При указанных на схеме номиналах резисторов и конденсаторов максимальный коэффициент передачи умножающих ЦАП (ОУ А2 и А3) не превышает единицы. По формуле (7) определяем, что для  в обоих каналах ФКБ необходимо использовать 10-разрядные ЦАП, что позволяет воспроизводить характеристики (19) и (20) в каждый момент времени с высокой точностью, то есть фактически непрерывно.

Результаты численного моделирования схемы ФКБ (рис. 3) показывают, что в рассматриваемом случае достаточным является разбиение интервала времени цикла на 100 отсчетов. Таким образом, частота работы ЦАП составляет .


Рис. 3. Принципиальная схема гибридного циклического ФКБ 2-го порядка

Отметим, что в рассматриваемом случае каких-либо формальных строгих процедур определения допустимого интервала отклонения значений коэффициентов усиления нет. Знаменатель замороженной передаточной функции идеализированного ФКБ на -м фиксированном интервале времени следует из (6) и может быть представлен следующим образом:

.                                                                (21)


Из представленных на рис. 2 временных зависимостей коэффициентов усиления следует, что на каждом интервале времени () указанный знаменатель является гурвицевым, так как выполняется условие . С учетом частотных свойств ОУ, входящих в состав реального ФКБ, и их идентичности полином (21) можно записать следующим образом:


,  (22)


где .

В выражении (22) не учтены все члены, обратно пропорциональные произведениям площадей усиления ОУ, влияние которых на свойства реализуемого ФКБ пренебрежимо мало. Используя результат [9], условие гурвицевости полинома (22) можно представить следующим образом:


.                   (23)


Учитывая, что , и пренебрегая членами второго порядка малости, неравенство можно записать в виде


.                                                                      (24)


Как видно из (24), требования к минимально возможному значению площади усиления ОУ в основном определяются максимально возможным значением отношения коэффициентов усиления фильтра и могут быть снижены при компенсации (уменьшении) величины . Анализ неравенства (24) показывает, что в рассматриваемом случае условие гурвицевости полинома (22) при выполнении  не зависит от вариаций приращений ,  и . Поэтому дальнейший синтез схемы будем производить таким образом, чтобы обеспечить минимальное отклонение АЧХ и переходных характеристик реального фильтра от идеализированного. В этом случае допустимое (минимально возможное) значение площади усиления ОУ может быть определено из анализа отклонений временных характеристик реального фильтра от идеализированного.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.