Рефераты. ПК на основе процессора INTEL 80286

Таким образом, если частота кварцевого генератора, определяющая частоту CLK, равна 20 МГц, то максимальная пропускная способность шины данных равна (20/4) миллионов слов в секунду, или 10 В/сек. Реальная пропускная способность существенно ниже.


ОРГАНИЗАЦИЯ СИСТЕМЫ ШИН L,X,S и M

В КОМПЬЮТЕРЕ PC/AT

На самом деле, в реальном компьютере имеется не одна, а несколько шин (рис. 2). Основных шин всего три, а обозначаются они как L- шина, S- шина, X- шина. Нами ране рассматривалась L-шина. Можно ввести понятие удаленности шины от процессора, считая, что чем больше буферов отделяют шину, тем она более удалена от процессора.

Основной шиной, связывающей компьютер в единое целое, является S- шина. Именно она выведена на 8 специальных разъемов слотов. Эти слоты хорошо видны на системной плате компьютера. В них стоят платы периферийных адаптеров.

Линии адреса, идущие от микропроцессора, образуют так называемую L- шину. Для передачи этого адреса на S- шину имеются специальные буферные регистры- защелки. Эти регистры- защелки не только передают адрес с L- шины на S- шину, но так же разъединяют их в случае необходимости. Такая необходимость возникает, например, когда осуществляется прямой доступ к памяти. В этом случае на S- шину выставляют контроллер прямого доступа 8237А и так называемые страничные регистры. Они подключены к X- шине, которая так же через буферные регистры соединена с системной S-шиной. Таким образом, наличие трех шин позволяет выставлять адреса на системную шину различным микросхемам.

Все микросхемы на системной плате, кроме процессора и сопроцессора, подключены к X- шине, в которой имеется адресная часть (XА- шина), линия данных (XD- шина) и управляющие сигналы (XCTRL- шина). Поэтому они отделены от процессора двумя буферами: между L- и S- шинами и между S- и X- шинами.

Кроме этих трех шин в компьютере имеется M- шина, предназначенная для отделения системной S- шины от оперативной памяти.


РЕГИСТРЫ ПРОЦЕССОРА 80286


Набор регистров процессора 80286 представляет собой строгое расширение набора регистров 8086, который имел 14 регистров. В процессоре 80286 появились дополнительно еще 5 новых регистров, в результате чего их общее число увеличилось до 19.

Далее рассматриваются так называемые "видимые" регистры, содержимое которых можно либо прочитать, либо изменить программным способом. Отметим, что в процессоре имеются "невидимые регистры", хранящие различную информацию для работы процессора и ускоряющие его работу. Регистры представлены на рисунке ("невидимые" изображены одинарной линией).

AX

AH

AL

BX

BH

BL

CX

CH

CL

DX

DH

DL

 

SP

BP

SI

DI

 

Права доступа к сегменту CS

Базовый адрес сегмента CS

Размер сегмента CS

 

CS

Права доступа к сегменту DS

Базовый адрес сегмента DS

Размер сегмента DS

DS

Права доступа к сегменту SS

Базовый адрес сегмента SS

Размер сегмента SS

SS

Права доступа к сегменту ES

Базовый адрес сегмента ES

Размер сегмента ES

ES

 

IP

 

F

 

MSW

 

Базовый адрес таблицы

GDTR

 

Базовый адрес таблицы

IDTR

 

Права доступа

Базовый адрес сегмента с локальной дескрипторной таблицей

Размер сегмента с локальной таблицей

 

LDTR

 

Права доступа

Базовый адрес сегмента состояния текущей задачи

Размер сегмента с состоянием задачи

 

TR

 

Регистры можно объединить в группы по схожести выполняемых ими функций. В первую группу, называемую группой регистров общего назначения, входят регистры AX, BX, CX, DX. Они предназначены в основном для хранения данных- шестнадцати битных слов. Только регистры BX и DX могут дополнительно использоваться как адресные: регистр BX- как адрес смещения байта или слова в оперативной памяти, регистр DX- как адрес порта ввода/вывода. При обработке данных каждый из этих регистров имеет свои особенности. Например, регистр AX всегда используется как один из операндов в команде умножения, регистр CX используется как счетчик командой LOOP организации цикла, DX как расширение регистра AX в командах умножения и деления. Эти регистры можно рассматривать как состоящие из двух однобайтовых регистров каждый: AX состоит из AH и

AL, BX- из BH и BL и т.д.

Следующую группу образуют регистры SP, BP, SI, DI. Эта группа называется группой адресных и индексных регистров. Из названия видно, что эти регистры могут использоваться в качестве адресных. Кроме того, их можно использовать в качестве операндов в инструкциях обработки данных.

Третья группа регистров CS, DS, SS, ES образует группу сегментных регистров. В процессоре 80286 доступ к данным и коду программы осуществляется через "окна" размером максимум 64К каждое. Есть окно с программой, его начало определяется регистром CS; есть окно с данными, начало которого определяется регистром DS. Начало окна со стеком определяется регистром SS, а дополнительного окна с данными- регистром ES.

В процессоре 80286 появилась возможность размещать таблицу векторов прерываний в произвольном месте оперативной памяти, а не обязательно в самом начале, как в процессоре 8086. Для этого имеется специальный регистр IDTR, по структуре аналогичный специальному сорока битному регистру GDTR (определяющий положение и размер глобальной дескрипторной таблицы, для определения же локальной дескрипторной таблицы имеется шестнадцати битный регистр LDTR). Он определяет начало и размер таблицы векторов прерываний. Имеются так же специальные команды его чтения и записи.

Регистр IP служит для хранения адреса смещения следующей исполняемой команды, а регистр F- для хранения флагов.

В процессоре 80286 появился новый регистр MSW, называемый словом состояния, или регистром состояния. Его значение прежде всего в том, что, загружая этот регистр состояния специальным значением (с битом PE=1), мы тем самым переключаем режим работы с обычного на защищенный.

И наконец, последний девятнадцатый регистр TR служит для организации многозадачной работы процессора в защищенном режиме. В обычном режиме он просто недоступен. Этот регистр служит селектором сегмента состояния задачи. Существуют выполняемые только в защищенном режиме команды чтения этого регистра TR и записи в него.

Таким образом, а процессоре 80286 при сравнении его с 8086 появилось пять новых "видимых" регистров и шесть "невидимых", четыре из которых связаны с регистрами CS, DS, SS, ES. Все новые регистры служат для управления доступом к памяти и организации многозадачной работы процессора.


Память

В отличие от недавно появившихся типов памяти, работа ИС асинхронной памяти не привязана жестко к тактовым импульсам системной шины. Поэтому данные на этой шине появляются в произвольные моменты времени (асинхронно). Но поскольку контроллер памяти (и системной шины) - устройство синхронное, то отсчет времени ведется в тактах. И если данные появятся на выходах ИС даже сразу после тактового импульса, они будут обработаны только с приходом следующего импульса. Это ограничивает возможности асинхронных ИС. Самым первым способом обмена данными с ОЗУ был так называемый Conventional с рабочей частотой от 4,77 до 40 МГц. Он позволял считывать и записывать информацию в строку только на каждый пятый такт (по механизму, описанному ранее). Поэтому из-за своей медлительности он вскоре был заменен более прогрессивными типами. Для Conventional общее число тактов, затрачиваемых на пересылку 4 строк данных, равно 20 (5 тактов для доступа по первому адресу – 5 по второму – 5 по третьему – 5 по четвертому).

FPM

Это самый ранний тип памяти, применявшийся во всех 286-386 компьютерах. В нем реализован режим постраничной адресации (fast page mode). Этот режим основан на том, что после выбора строки в ядре передача данных на выход и с выхода выполняется просто подключением к входным/выходным формирователям данных нужного "столбца" (столбцов, если понимать под столбцом один разряд в матрице ядра). Следовательно, при повторных обращениях к одной и той же строке ядра не нужно подавать адрес строки, дешифрировать его, считывать строку. В FPM повышение скорости обмена данными достигается благодаря передаче полного адреса (строки и столбца) только при первом обращении к памяти. При остальных обращениях в пределах той же строки указывается лишь сокращенный адрес (только столбцы). В результате потери времени сокращаются на два такта, ранее нужные для передачи адреса каждой строки (нет тактов для передачи собственно адреса строки и активизации сигнала RAS). Схема чтения FPM теперь другая - 5–3–3–3, даже на частоте 66 МГц. По сравнению с Conventional (20 тактов) это дает увеличение производительности на целых 70%. Однако если программа часто обращается к разным областям памяти, переходя на другую строку ядра, то формируется полный адрес, что сводит преимущества метода на нет. К счастью, на практике часто происходит обмен достаточно крупными сплошными массивами данных (например, многие команды процессора кодируются несколькими байтами). Возможно, именно поэтому метод был положен в основу всех последующих технологий, однако нужно все же не забывать, что все их преимущества также проявляются только в пределах одной страницы (строки ядра).

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.