Рефераты. Исследование магнитного поля рассеяния при вихретоковом контроле

Из табл. 2 определяем наиболее коррелирующие признаки, на основе которых будет обучаться интеллектуальная нейронная сеть.

Классификация раскрытий дефектов будет производиться по признакам F1, F5, F10 и F11. Классификация глубин – F2, F4, F6 и F9.


5.2 Построение искусственных нейронных сетей


Нейронные сети привлекательны с интуитивной точки зрения, ибо они основаны на примитивной биологической модели нервных систем. В будущем развитие таких нейро-биологических моделей может привести к созданию действительно мыслящих компьютеров. Основными преимуществами использования нейронных сетей являются богатые возможности и простота в использовании.

Нейронные сети - исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости. В частности, нейронные сети нелинейны по своей природе. На протяжении многих лет линейное моделирование было основным методом моделирования в большинстве областей, поскольку для него хорошо разработаны процедуры оптимизации. В задачах, где линейная аппроксимация неудовлетворительна (а таких достаточно много), линейные модели работают плохо. Кроме того, нейронные сети справляются с "проклятием размерности", которое не позволяет моделировать линейные зависимости в случае большого числа переменных. В этом заключаются богатые возможности нейронных сетей.

Простота в использовании состоит в том, что нейронные сети учатся на примерах. Пользователь нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя, конечно, требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты, однако уровень знаний, необходимый для успешного применения нейронных сетей, гораздо скромнее, чем, например, при использовании традиционных методов статистики.

Основными этапами решения задачи являются:

1.                 Сбор данных для обучения

2.                 Подготовка и нормализация данных

3.                 Выбор топологии сети

4.                 Экспериментальный подбор характеристик сети

5.                 Экспериментальный подбор параметров обучения

6.                 Собственно обучение

7.                 Проверка адекватности обучения

8.                 Корректировка параметров, окончательное обучение

9.                 Вербализация сети с целью дальнейшего использования

На данном этапе уже решены первые два пункта. Рассмотрим подробнее остальные этапы.

Выбирать тип сети следует исходя из постановки задачи и имеющихся данных для обучения. Для обучения с учителем требуется наличие для каждого элемента выборки «экспертной» оценки. Иногда получение такой оценки для большого массива данных просто невозможно. В этих случаях естественным выбором является сеть, обучающаяся без учителя, например, самоорганизующаяся карта Кохонена или нейронная сеть Хопфилда. При решении других задач, таких как прогнозирование временных рядов, экспертная оценка уже содержится в исходных данных и может быть выделена при их обработке. В этом случае можно использовать многослойный персептрон. В нашем случае стоит задача регрессии и нам подходят несколько типов сетей: многослойный персептрон, сеть радиальных базисных функций или вероятностная нейронная сеть.

После выбора общей структуры нужно экспериментально подобрать параметры сети. Для сетей, подобных персептрону, это будет число слоев, число блоков в скрытых слоях, наличие или отсутствие обходных соединений, передаточные функции нейронов. При выборе количества слоев и нейронов в них следует исходить из того, что способности сети к обобщению тем выше, чем больше суммарное число связей между нейронами. С другой стороны, число связей ограничено сверху количеством записей в обучающих данных.

После выбора конкретной топологии, необходимо выбрать параметры обучения нейронной сети. От правильного выбора параметров зависит не только то, насколько быстро ответы сети будут сходиться к правильным ответам. Например, выбор низкой скорости обучения увеличит время схождения, однако иногда позволяет избежать паралича сети. Увеличение момента обучения может привести как к увеличению, так и к уменьшению времени сходимости, в зависимости от формы поверхности ошибки. Исходя из такого противоречивого влияния параметров, можно сделать вывод, что их значения нужно выбирать экспериментально, руководствуясь при этом критерием завершения обучения, например, минимизация ошибки или ограничение по времени обучения).

В процессе обучения сеть в определенном порядке просматривает обучающую выборку. Порядок просмотра может быть последовательным, случайным и т. д. Некоторые сети, обучающиеся без учителя, например, сети Хопфилда просматривают выборку только один раз. Другие, например сети, обучающиеся с учителем, просматривают выборку множество раз, при этом один полный проход по выборке называется эпохой обучения. При обучении с учителем набор исходных данных делят на две части — обучающую выборку и тестовые данные; принцип разделения может быть произвольным. Обучающие данные подаются сети для обучения, а проверочные используются для расчета ошибки сети (проверочные данные никогда для обучения сети не применяются). Таким образом, если на проверочных данных ошибка уменьшается, то сеть действительно выполняет обобщение. Если ошибка на обучающих данных продолжает уменьшаться, а ошибка на тестовых данных увеличивается, значит, сеть перестала выполнять обобщение и просто «запоминает» обучающие данные. Это явление называется переобучением сети или оверфиттингом. В таких случаях обучение обычно прекращают.

Даже в случае успешного, на первый взгляд, обучения сеть не всегда обучается именно тому, чего от неё хотел создатель. Таким образом, сеть «понимает» не то, что от неё требовалось, а то, что проще всего обобщить.

В ходе анализа результатов сетей мной было отдано предпочтение структуре трехслойного персептрона, так как он обладает наименьшей погрешностью обучения, его архитектура достаточно проста, а так же вероятность оверфиттинга сведена к минимуму. Далее будут приведены выбранные архитектуры сетей и их основные параметры.


5.3 Архитектуры выбранных сетей и их основные параметры


Искусственная нейронная сеть для определения глубины дефекта

Архитектура сети МП 6:6-9-1:1


Рисунок 17. Архитектура сети


Производительность обучения

0,193377

Контрольная производительность

0,190212

Ошибка обучения

0,054221

Контрольная ошибка

0,055778

Входы

6

Скрытые(1)

9

Скрытые(2)

0


Среднее данных

0,000800

Ст. отклик данных

0,000283

Среднее ошибки

-0,000001

Ст. отклик ошибки

0,000055

Среднее абсолютной ошибки

0,000043

Отношение ст. отклик

0,193778

Корреляция

0,981070


Прогнозирование

После обучения сети был проведен ряд тестовых испытаний, в ходе которых были получены следующие прогнозы:

 


прогноз

истинное значение

1

0,000786

0,000700

2

0,000752

0,000700

3

0,000806

0,000900

4

0,000845

0,000900

5

0,000749

0,000700


Искусственная нейронная сеть для определения раскрытия дефекта

Архитектура сети МП 8:8-7-1:1

 

Рисунок 18. Архитектура сети


Производительность обучения

0,281847

Контрольная производительность

0,180694

Ошибка обучения

0,078536

Контрольная ошибка

0,051684

Входы

8

Скрытые(1)

7

Скрытые(2)

0

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.