Рефераты. Дифференциальные уравнения и описание непрерывных систем

Теорема утверждает существование единственного решения на отрезке K, содержащем точку t0. Однако, это решение может быть продолжено за пределы отрезка K вплоть до границы области G.

Если функция f(t, x1, ..., хn) имеет ограниченные частные производные по xi в выпуклой области G, то эта функция удовлетворяет условию Липшица.


2.5. Ломаная Эйлера и e-приближенное решение

 

Рассмотрим систему уравнений

(2)

причем будем полагать, что эта система удовлетворяет условиям теоремы существования и единственности.


Совокупность n функций z1(t), ..., zn(t) называется e-приближенным решением системы (2) на отрезке А, если каждая из этих функций непрерывна, имеет кусочно-непрерывную производную  и

во всех точках tÎK, кроме точек разрыва непрерывности этой производной.

Пусть задана начальная точка (t0, x10, …, хn0) и пусть функции fi(t, xi,...,хn) непрерывны по t в области G и удовлетворяют в этой области условию Липшица по переменным t, x1, х2, ..., хn. Можно показать, что в этом случае функции fi(t, x1,..., хn) будут непрерывны по совокупности переменных t, x1,..., хn в области G. Из непрерывности функций fi (t, x1,..., хn) в замкнутой области G сле­дует их равномерная непрерывность. Таким образом, для любого e>0 найдется такое d>0, зависящее только от e, что при

будет справедливо неравенство

Построим e-приближенное решение системы (2). Для этого разобьем область G на кубы со сторонами, меньшими d (для случая n=1 построение проведено на рис. 2, в этом случае область разбивается на квадраты). Из точки (t, xlo, ..., хn0) проведем прямую

Эту прямую продолжим до пересечения с одной из сторон соответствующего куба. Обозначим точку пересечения (t1, x11,..., xn1). Из этой точки проведем прямую

которую продолжим до пересечения с одной из сторон куба; обозначим точку пересечения (t2, x12,..., xn2), через эту точку проводим новую прямую

и так далее.

В результате указанных действий получим ломаную xi=xi(t) (i=l, 2, ..., n), называемую ломаной Эйлера. Эта ломаная представляет собой непрерывную кусочно-линейную функцию. Ломаную Эйлера мы можем продолжить до границы области G.

Пусть xi(t) (i=l, 2, ..., n) — точное решение системы (2), удовлетво­ряющее начальным условиям. Обозначим через si(t) (i=1, 2, ..., n) e-приближенное решение системы (1) для тех же начальных условий. Тогда

Отсюда следует, что если |t–t0|<h, то

Таким образом, при e®0 решение xi(t) (i=1, 2, ..., n) равномерно сходится к решению si(t) (i=l, 2, ..., n) и ломаная Эйлера, исходящая из точки (t0, xi(t0)), равномерно сходится к точному решению. Это неравенство дает оценку погрешности при замене точного решения e-приближенным.

Полученные неравенства мы используем для выяснения важной зависимости решений дифференциальных уравнений от начальных условий и параметров уравнений.

2.6. Непрерывная зависимость решений от начальных условий и параметров


Пусть задана нормальная система дифференциальных уравнений (2), причем функции fi(t, xl ,..., хn) непрерывны по t и удовлетворяют условию Липшица по х1, ..., хn в некоторой области G.

Пусть далее x=x(t, t0, x0) — решение этой системы, удовлетворяющее начальным условиям. Положим, что это решение определено на отрезке |t-t0|≤h. Тогда для любого e>0 существует такое d(e, h)>0, что другое решение x=s(t, t0, z0), удовлетворяющее начальным условиям

где ||x0–z0||<d, будет определено на том же отрезке |t-t0|≤h и удовлетворяет неравенству

Рассмотрим теперь непрерывную зависимость решения системы дифференциальных уравнений от параметров. Пусть имеется система уравнений

Здесь (μ1,…, μs)=μ – вещественные параметры, а функции fi(t, x, μ) определены и непрерывны по совокупности переменных t, x1, …, xn, μ1, …, μs в некоторой области G n+s+1-мерного пространства и удовлетворяют условию Липшица по переменным x1, …, xn с постоянной L. Пусть далее x=x(t, μ’) – решение этой системы при значении параметров μ=μ’, удовлетворяющее начальным условиям x(t0, μ’)=x0 и определенное на отрезке.

Тогда справедлива теорема:

Пусть x(t, μ’’) — решение данной системы при значении параметров μ=μ’’, удовлетворяющее начальным условиям x(t0, μ’’)=x0. Тогда для любого e>0 существует такое d(e, h)>0, что если справедливо неравенство |μ’–μ’’|<d, то решение x(t, μ’’) определено на интервале |t—t0|≤h и удовлетворяет неравенству

|| x(t, μ’)–x(t, μ’’) ||<e.

Доказанные теоремы о непрерывной зависимости решений от начальных условий и параметров имеют принципиальное значение. Параметры дифференциальных уравнений систем автоматического регулирования (САР) задаются с некоторыми погрешностями. На основании доказанных выше теорем можно утверждать, что если погрешность в определении параметров дифференциальных уравнений САР незначительна, то решения этих уравнений с достаточной достоверностью описывают происходящие в САР процессы.


2.7. Линейные дифференциальные уравнения

2.7.1. Нормальная линейная система дифференциальных уравнений

Линейной системой дифференциальных уравнений называется такая система уравнений, в которую неизвестные функции и их производные могут входить только в первой степени.

Нормальная линейная система дифференциальных уравнений имеет вид

Введем в рассмотрение векторные функции

Тогда систему (1) можно переписать в виде

Теорема существования и единственности справедлива для линейной системы на любом отрезке [а1 ,b1]Ì(а, b), где (a, b) - интервал, на котором функции aik(t) и fi(t) непрерывны.


2.7.2. Общее решение линейной однородной системы

Система (1) называется однородной, если fi(t)º0 (i=1, 2, …, n). Однородная система в векторной форме запишется в виде

(3)

Совокупность S всех решений {x(t)} образует линейное пространство размерности n, так как решения этой системы являются линейно-независимыми и образуют базис. Любой элемент этого пространства представим в виде

(4)

причем постоянные c1, c2, …, cn определяются однозначно. Отсюда следует, что любое решение данной системы может быть представлено в виде (4). Поэтому выражение (4) называется общим решением системы (3). Любая система из n линейно-независимых решений системы (3), образующая базис пространства S, называется фундаментальной системой решений.


2.7.3. Определитель Вронского. Формула Лиувилля

Пусть имеется некоторая система из n векторных функций

Тогда определителем Вронского, или вронскианом, называется определитель, составленный из компонент этих векторных функ­ций. Таким образом, определитель Вронского имеет вид

Если система векторных функций x1(t), ..., хn(t) линейно-зависима, то определитель Вронского W(t)=0.

Пусть вектор-функции x1(t), ..., xn(t) представляют собой n решений системы (3). Тогда, если определитель Вронского W(t) для этих решений обращается в ноль в какой-нибудь точке t0Î[а, b], то W(t) тождественно равен нулю на всем отрезке [а, b].

Пример: рассмотрим вектор-функции

Определитель Вронского для этих функций

При t = 0 W(0) = 0, но W(t) не равен тождественно 0. Отсюда следует, что данные вектор-функции х1(t) и x2(t) не могут быть решениями системы уравнений вида (3) с непрерывными коэффициентами, определенными на интервале, содержащем точку t=0.

Значение определителя Вронского в произвольной точке t можно вычислить с помощью рассмотренной ниже зависимости, называемой формулой Лиувилля.

Пусть x1(t), x2(t), ..., xn(t) — n решений системы (3). Тогда между значениями определителя Вронского W(t) в точках t0 и t существует следующая зависимость:

– след матрицы A(t).

2.7.4. Линейная неоднородная система. Метод вариации произвольных постоянных

Рассмотрим линейную неоднородную систему (2)

Соответствующая ей однородная система (3)

Пусть x=y(t) и j(t) – два решения системы (2). Тогда разность

x(t)= y(t)–j(t)

Представляет собой решение однородной системы (3).

Общее решение системы (2) имеет вид

где ci – произвольные постоянные; xi(t) (i=1, 2, …, n) – фундаментальная система решений системы (3).

Частное решение системы (2) может быть найдено методом вариации произвольных постоянных. Рассмотрим этот метод. Пусть x1(t), x2(t), …, xn(t)— фундаментальная система решений системы (3). Частное решение неоднородной системы (2) будем искать в виде

полагая, что ci являются не постоянными, а некоторыми функциями t. Подставим это решение в систему (2):

Так как вектор-функции xi(t) – являются решениями однородной системы (3), то

поэтому

Это выражение представляет собой систему линейных алгебраических уравнений относительно сi(t) (i=l, 2, ,..., n). Определитель этой системы уравнений есть определитель Вронского для фундаментальной системы решений. Он отличен от нуля, поэтому эта система имеет единственное решение сi’(t)=Фi(t) (i=l, 2,..., n).

Интегрируем полученные равенства:

Следовательно, искомое частное решение имеет вид

Значит, общее решение неоднородной системы будет


2.7.5. Формула Коши

При помощи формулы Коши можно выразить решение линейной неоднородной системы дифференциальных уравнений через некоторую фундаментальную систему решений соответствующей однородной линейной системы.

Рассмотрим неоднородную линейную систему дифференциаль­ных уравнений (2), записанную в векторном виде

Соответствующая ей однородная система (3)

Пусть x1, x2, …, xn – фундаментальная система решения системы уравнений (3). Образуем матрицу X1(t), столбцы которой являются этими решениями:

Определитель матрицы Х1(t) представляет собой определитель Вронского. Он отличен от нуля для всех tÎ[a, b]. Следовательно, существует обратная матрица X-11(t) при каждом tÎ[а, b]. Составим матрицу

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.