Рефераты. Аппаратные средства ПК

Rise

mP6 – первые процессоры компании Rise. Предназначены для ноутбуков, использующих Socket 7. Отличаются очень малым тепловыделением. Кэш-память L1 – 16 Кбайт (по 8 Кбайт для данных и инструкций), L2 – от 512 Кбайт до 2 Мбайт, расположена на материнской плате, работает на частоте шины процессора. Поддерживается дополнительный набор инструкций MMX. При оценке производительности своих процессоров Rise, как и Cyrix, использует PR-рейтинг, составляющий от 166 до 366 МГц.

mP6 II – процессоры, отличающиеся от своих предшественников mP6 тем, что в чип интегрирована кэш-память L2 объемом 256 Кбайт. Была обещана поддержка SSE, производительность от PR-200 и выше. Однако в августе 1999 было объявлено об отмене планов по выходу процессора из-за значительного удорожания после добавления L2 в чип.

Tiger – mP6 II для платформы Socket 370. Кэш-память L1 – 16 Кбайт, L2 – 256 Кбайт, работающая на тактовой частоте ядра процессора. Выпуск отменен.

Centaur

Winchip С6 – процессоры, ориентированные на дешевые ПК. По производительности уступают своим конкурентам. Шина – 60, 66, 75 МГц, платформа – Socket 7. Технология – 0,35 мкм. Процессоры поддерживают набор инструкций MMX. Вышел в октябре 1997 г., работал на частотах от 180 до 240 МГц.

Winchip-2 – процессоры, производимые по техпроцессу 0,25 мкм. Кэш-память L1 – 64 Кбайт (по 32 Кбайт для инструкций и данных), кэш-память L2 – 512-2048 Кбайт находится на материнской плате. Процессорами поддерживаются наборы инструкций MMX и 3DNow!. Платформа – Socket 7. От Winchip С6 отличаются значительно ускорившейся работой с числами с плавающей запятой. Появилась поддержка частоты системной шины 100 МГц. Первый процессор появился в ноябре 1998 года, частоты от 200 до 300 МГц.

Winchip-2A – процессоры Winchip-2 с исправленной ошибкой в реализации 3DNow!.

Winchip-3 – процессоры с кэш-памятью L1 объемом 64 Кбайт (по 32 Кбайт для инструкций и данных) и кэш-памятью L2 объемом 128 Кбайт на чипе, работающей на частоте ядра процессора. Кэш-память L3 – 512-2048 Кбайт, расположена на материнской плате. Планировались к выходу в первой половине 1999 г. с частотой 300 МГц и выше. В связи с покупкой Centaur фирмой VIA выход процессоров был отменен.

Winchip-4 – процессоры, выпуск которых планировался в конце 1999 г. Частоты – 400-500 МГц, а при переходе на 0,18 мкм техпроцесс – 500-700 МГц.

VIA

Samuel – кодовое наименование процессоров и ядра. Основой послужило ядро Winchip-4, доставшееся VIA в наследство от Centaur. Работают на частотах 500-700 МГц. Производятся National Semiconductors и TSMC с использованием 0,18 мкм техпроцесса. Процессоры используют набор SIMD 3D Now!. Форм-фактор – Socket-370. Кэш-память L1 – 128 Кбайт. Получили наименование Cyrix III. Тактовая частота ядра – 500-667 МГц.

C5A – то же, что и Samuel.

Samuel 2 – кодовое наименование процессоров и ядра, разработанных группой Centaur. Кэш-память L2 объемом 64 Кбайт. Тактовая частота ядра – 667-800+ МГц. Частота шины процессора 100/133 МГц, форм-фактор – Socket 370.

C5B – то же, что и Samuel 2.

Matthew – кодовое наименование интегрированных процессоров. Имеют в своем составе ядро Samuel2 с интегрированным видео и компонентами North Bridge.

Ezra – кодовое наименование процессоров и ядра. Совместная разработка групп Cyrix и Centaur. Первое действительно новое ядро VIA. Процессоры с поддержкой SSE. Кэш-память L1 – 128 Кбайт, кэш-память L2 – 64 Кбайта. Технология – 0,15 мкм c переходом на 0,13 мкм. Тактовая частота ядра – 750 МГц с последующим ростом выше 1 ГГц. TSMC подтвердила информацию о том, что она изготовила процессор Ezra с частотой 1 ГГц.

C5C – то же, что и Ezra.

Ezra-T – кодовое наименование процессоров и ядра. Совместимость по уровню сигналов с Tualatin, что позволяет их использовать в материнских платах с чипсетами, созданными под Tualatin. Технологический процесс 0,13 мкм, алюминиевые соединения. Кэш память L1 – 128 Кбайт, L2 – 64 Кбайт. Имеют меньшее, по сравнению с Ezra, энергопотребление. Поддержка MMX, 3D Now!. Тактовая частота ядра – от 800 МГц (6х133 МГц).

Nehemiah – кодовое наименование процессоров и ядра. Рассчитаны на работу при частотах 1,2+ ГГц. Кэш-память L1 – 128 Кбайт, кэш-память L2 – 256 Кбайт. Будут поддерживать инструкции Streaming SIMD Extensions (SSE) и 3DNow!. Конвейер в 17 стадий, напряжение питания ядра 1,2 В, техпроцесс 0,13 мкм с использованием медных соединений, площадь кристалла – 72 кв. мм.

C5X – то же, что и Nehemiah.

Esther – кодовое наименование процессоров и ядра. Кэш-память L1 – 128 Кбайт, L2 – 256 Кбайт. Конвейер 17 ступеней. Тактовая частота ядра 2 ГГц.

C5Y – то же, что и Esther.

SiS

550 – базовая модель процессоров серии 550. Основой послужило ядро mP6 от Rise с интегрированным видео и компонентами чипсета.

551 – модель процессора, созданная на основе SiS 550, с поддержкой флеш-карт и шифрования.

552 – модель процессора, созданная на основе SiS 551, с поддержкой аудио- и видеозахвата.

Transmeta

Crusoe – линейка процессоров, ориентированных на мобильные системы. Состоит из моделей TM3200 (L2=0), TM5400 (L2=256 Кбайт), TM5500 (L2=256 Кбайт), TM5600 (L2=512 Кбайт), TM5800 (L2=512 Кбайт), имеющих в своем составе интегрированные компоненты North Bridge. Характеризуются низким энергопотреблением.

Astro – кодовое имя высокопроизводительных процессоров со сверхнизким уровнем энергопотребления. Рабочая частота достигнет 1,4 ГГц при 0,5 Вт. В основе 256-разрядная архитектура.

Compaq

Alpha EV68 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,18 мкм. Базируется на ядре Alpha EV6. Более 15 млн. транзисторов. Модель 1 ГГц объявлена в 2001 г.

Alpha EV7 – кодовое имя высокопроизводительных процессоров. Техпроцесс 0,18 мкм с использованием медных соединений. Базируется на ядре Alpha EV6. Более 100 млн. транзисторов, напряжение питания ядра 1,5 В, мощность тепловыделения 100 Вт, частота 1,2-1,3 ГГц, до 1,75 Мбайт L2, корпус с 1439 контактами. Возможно использование интегрированного контроллера памяти. Выпуск моделей запланирован на 2002 г. В связи с покупкой фирмой Intel в 2001 г. подразделений, патентов и технологий, связанных с процессорами Alpha EVxx, процессоры Alpha EV7 или Alpha EV8, возможно, будут последними разработками этого направления.

Alpha EV8 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,13 мкм с использованием SOI. Более 250 млн. транзисторов, суперскалярное ядро (до 8 инструкций за 1 такт), мощность тепловыделения – 150 Вт, частота от 1,4 ГГц, кэш L2 будет составлять ориентировочно 2 Мбайт, корпус с 1800 контактами. Выпуск моделей запланирован на 2004 г. Возможно, последняя разработка этого направления.

Alpha EV9 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,10 мкм, 500 млн. транзисторов, частота 2-3 ГГц. Выпуск моделей был запланирован на 2006 г.

Alpha EV10 – кодовое имя высокопроизводительных процессоров с архитектурой, отличной от традиционной х86. Техпроцесс 0,07 мкм, 1,5 млрд транзисторов, частота 3-4 ГГц. Выпуск моделей был запланирован на 2008 г.



Оперативная память

Основная часть этого материала посвящена Dynamic RAM (DRAM), применяемой на сегодняшний день в подавляющей части систем. По сравнению с SRAM (Static RAM), применяемой в кеше второго уровня, это - более дешевое решение, однако DRAM работает несколько медленнее из-за необходимости периодического обновления содержимого памяти во избежание потери информации. В настоящее время существуют следующие разновидности DRAM: Fast Page Mode (FPM) и Extended Data Out (EDO), отличающиеся способом доступа к данным и взаимодействием с центральным процессором. Более продвинутыми и технологичными являются Burst EDO (BEDO), Synchronous DRAM (SDRAM), Video RAM (VRAM), Window RAM (WRAM), Synchronous Graphics RAM (SGRAM) и RAMBUS RAM, SDRAM и DDR SDRAM.

В этот список не попали Static RAM (SRAM) и Read Only Memory (ROM). SRAM не нуждается в периодическом обновлении содержимого и применяется в кеше. ROM используется в основном для хранения BIOS, где информация должна сохраняться и при выключенном питании, что и позволяет этот тип памяти. ROM включает в себя также PROM, EPROM, EEPROM и FLASH ROM. Память типа EEPROM и FLASH ROM используется в системах BIOS и может быть обновлена при помощи утилит, поставляемых производителем.

Чипы памяти – упаковка и особенности работы

Модули памяти DRAM выпускаются в виде: DIP (dual in-line package), SOJ (small outline J-lead) и TSOP (thin, small outline package). DIP - это микросхема с двумя рядами выводов по обе стороны чипа и впаиваемая этими контактами в небольшие отверстия в печатной плате. Изначально, модули DIP устанавливались непосредственно в материнскую плату. Однако, в настоящее время, они используются в первую очередь в кеше второго уровня в устаревших материнских платах и вставляются в панельки, припаянные к материнской плате. SOJ - это «тот же DIP, вид сбоку», потому что их выводы просто загнуты на концах, как буква «J». Чипы типа TSOP отличаются небольшой толщиной и имеющие контакты, выведенные во все стороны. SOJ и TSOP разработаны для установки на печатных платах. Однако некоторые производители видеокарт монтируют контактные площадки для установки модулей типа SOJ на свои изделия.

Производители наносят на каждую микросхему маркировку, включающую название производителя, конфигурацию чипа, скорость доступа и дату производства. Эта маркировка наносится не на поверхность, а внедрена в пластмассовый корпус чипа. Единственный способ удалить эту маркировку - спилить ее шкуркой или напильником. Далее на чип наносится защитное покрытие, предающее ему презентабельный вид. Кроме того, некоторые производители наносят на верхнюю часть микросхемы небольшую рельефную точку для обозначения первого вывода чипа и для идентификации перемаркировок, выполненных кустарно.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.