Рефераты. Анализ работы плоского рычажного механизма

Так как точка F0 неподвижна, то на плане ускорений точка f0 находится в полюсе. Про ускорение aFF0 известно лишь то, что оно параллельно направляющей. Потому на плане через точку f0 строится горизонтальная линия. На пересечении этой линии и линии atEF находится точка f. Численное значение ускорения точки F:


аF = mа · Па f’ = 2 · 63 = 126 м/с2, (1.2.35),

где Па f’ - длина вектора, который соединяет полюс с точкой f’.

Расставим на плане ускорений центры масс каждого звена данного механизма. Для звена BA вектор центра масс S1’ на плане скоростей будет направлен из полюса вдоль вектора ba величиной равной его половине.

Численное значение ускорения аS1 равно:

аS1 = mа · Па S1’ = 2 · 67 = 134 м/с2 (1.2.36).

Для звена АС вектор его центра масс S2 на плане ускорений будет направлен из полюса в точку соответствующую середине отрезка а’с’.

Численное значение ускорения аS2 равно:


аS2 = mа · Па S2’ = 2 · 109 = 218 м/с2 (1.2.37).

Вектор центра масс S3 звена ЕF на плане ускорений будет направлен из полюса в точку соответствующую середине отрезка е’f на плане ускорений.

Численное значение ускорения аS3 равно:


аS3= mа · Па S3’ = 2 · 82 = 164 м/с2 (1.2.38).

Для звена DC вектор центра масс S4 на плане ускорений будет направлен из полюса вдоль вектора dc величиной равной его половине.

Численное значение ускорения аS4 равно:


аS4= mа · Па S4’ = 2 · 43 = 86 м/с2 (1.2.39).


С помощью плана ускорений можно определить угловые ускорения звеньев механизма. Угловое ускорение звена АС равно:


εАС = аtAC / lAC = mа · tAC / lAC = 2 · 53/ 0,09 = 1177,77 рад/с2 (1.2.40)


где lAC - длина звена; аAC - ускорение движения точки А относительно точки С. Аналогично для звена EF вычислим его угловое ускорение εEF :


εEF = аtEF / lEF = mа · tEF / lEF = 2 · 35/ 0,11 = 636,36 рад/с2 (1.2.41)


Таким же образом для звена СD вычислим его угловое ускорение εCD :


εCD = аtCD / lCD = mа · tCD / lCD = 2 · 37/ 0,06 = 1233,33 рад/с2 (1.2.42).

Угловое ускорение звена АВ εАВ = 0.

Полученные при построении плана ускорений данные сведем в таблицу 1.2.

Таблица 1.2

аA = 269,314 м/с2

aS1 = 134 м/с2

εАВ = 0 рад/с2

аС = 172 м/с2

aS2 = 218 м/с2

εАС = 1177,77 рад/с2

аЕ = 200 м/с2

aS3 = 164 м/с2

εСD = 1233,33 рад/с2

aF = 66 м/с2

aS4 = 84 м/с2

εEF = 636,36 рад/с2


1.3 СИЛОВОЙ АНАЛИЗ МЕХАНИЗМА


Кинетостатический расчет, положенный в основу силового расчета механизма, базируется на принципе Д’ Аламбера, который в общем случае движения звеньев механизмов, совершающих сложное плоское движение, позволяет решить задачу путем сведения сил инерции звеньев к главному вектору инерции Fi и к главному моменту сил Мi.


Fi = - asi · mi (1.3.1).

Знак "-" означает, что вектор силы инерции направлен в сторону противоположную ускорению центра масс.

Массы звеньев рассчитываются с помощью формулы:


m = q · l (1.3.2),

где q = 0,1 кг/м, l - длина звена.


m = P/g (1.3.3),

где g- ускорение свободного падения, g = 9,8 м/с2

Также существует главный момент инерции звена, который приложен к центру масс звена и направлен в противоположную сторону угловому ускорению звена.

Мi = -Jsi · ε (1.3.4),

где Js - момент инерции звена,

ε - угловое ускорение звена.


1.3.1 РАСЧЕТ СИЛ И ГЛАВНЫХ МОМЕНТОВ ИНЕРЦИИ ЗВЕНЬЕВ МЕХАНИЗМА


mEF = q · lEF = 0,1 · 0,11 = 0,011 кг;

аS3 = 164 м/c2;

Fi1 = - as1 · mAB = - 164 · 0, 011 = - 1,8 Н;

JS3 = mEF · lEF2 / 12 = 0,011 · (0,11)2 /12 = 11 · 10-6 кг · м2

ε = 636,36 рад/с2

Mu3 = - JS3 · ε = 11 · 10-6 · 636,36 = -0,7 · 10-2

mАС = q · lAC = 0,1 · 0,09 = 0,009 кг;

аS2 = 218 м/c2;

Fi2 = - as2 · mAC = - 218 · 0, 009 = -1,9 Н;

JS2 = mAC · lAC2 / 12 = 0,009 · (0,09)2 /12 = 6 · 10-6 кг · м2

ε = 1177,77 рад/с2

Mu2 = - JS2 · ε = - 6 · 10-6 · 1177,77 = - 0,7 · 10-2

mCD = q · lCD = 0,1 · 0,06 = 0,006 кг;

аS4 = 86 м/c2;

Fi4 = - as4 · mCD = - 86 · 0, 006 = - 0,5 Н;

JS4 = mCD · lCD2 / 12 = 0,006 · (0,06)2 /12 = 1,8 · 10-6 кг · м2

ε = 1233,33 рад/с2

Mu4 = - JS4 · ε = 1,8 · 10-6 · 1233,33 = -0,2 · 10-2

mAB = q · lAB = 0,1 · 0,034 = 0,0034 кг;

аS1 = 134 м/c2;

Fi1 = - as1 · mAB = - 134 · 0, 0034 = - 0,45 Н;

Силы и главные моменты звеньев сведем в таблицу 1.3.


Таблица 1.3

Fi1 = - 0,45 H

Mi1 = 0 H · м2

Fi2 = - 1,9 H

Mi2 =- 0,7· 10-2 H · м2

Fi3 = - 1,8 H

Mi3 =- 0,7· 10-2 H · м2

Fi4 = - 0,5 H

Mi4 =- 0,2· 10-2 H · м2


1.3.2 ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В КИНЕМАТИЧЕСКИХ ПАРАХ

Силовой анализ механизма начинаем с группы Ассура 3-5, наиболее удаленной от ведущего звена. Связи в шарнирах заменяются реакциями RE1 и RE2.

В шарнире F реакция неизвестна по модулю и направлена по горизонтали. Обозначим в точке S3 силу инерции. Обозначим также вес G3 звена FE и вес ползуна P.

Сумма моментов относительно точки F равна 0:


∑ MF = 0 (1.3.4)

∑ MF = -R’E · lef + Fi3 · h i3 - M + G3h1 = 0 (1.3.5)

R’E = (G3h1 + Fi3 · h i3 - M) / lef = (0,1 ·0,008 +1,8·0,006 +0,7·10-2) / 0,11 = 0,1 H

Составляем векторное уравнение:


G3 + RE + R"E + Fi3 + Fi5 + P + G5+R56 = 0 (1.3.6).

С учетом этого уравнения строим замкнутый силовой многоугольник. На чертеже выбираем полюс PF. От него проводим вектор произвольной длины по направлению силы G3. Вычисляем масштабный коэффициент:

μF = G3 / PF G3 (1.3.7),

 μF = 0,1 / 5 = 0,02 Н/мм

Далее к вектору G3 достраиваем другие составляющие уравнения (1.3.6), рассчитывая длину векторов при помощи масштабного коэффициента. Находим неизвестные силы R’’E и R56, зная их направление. Определив их численное значения в мм, переводим это значение в Н с помощью масштабного коэффициента.


R’’E = mF · ПF R’’E = 0,02 · 84= 1,68 H (1.3.8),

где, ПF R’’E - положение R’’E на плане сил.

R56= mF · ПF R56 = 0,02 · 37,5 = 0,75 H (1.3.9),

где, ПF R56- положение R56 на плане сил.

Найдем RE - результирующую силу в паре Е, соединив начало RE и конец R"E. Определив его численное значения в мм, переводим это значение в Н с помощью масштабного коэффициента.


RE = mF · ПF RE = 0,02 · 85= 1,7 H (1.3.10),

где, ПF RE - положение RE на плане сил.

Для определения реакции в кинематической паре 2-4 к шарниру АС необходимо приложить силу RE того же значения, но противоположного направления. Реакции в шарнирах А и D нужно разложить на составляющие по направлению осей R’А и RD , и перпендикулярные к ним: R’’А и R’’D. Известна точка приложения сил - центр шарнира, запишем уравнения сумм моментов каждого звена относительно точки С.


∑ MС = R’А · lАС - F i2 · h i5 + Mi2 - G2h6 + RE = 0 (1.3.11),

R’A = (- G2h6 - Fi2 · h i5 + M i2) / lAC= (-0,09·0,036 +1,9·0,023 - 0,7·10-2) / 0,09 = 1,9 H

Для звена СD сумма моментов относительно точки С равна нулю.


∑ MС = R’D · lDС + F i4 · h i3 + Mi4 + G4h4 = 0 (1.3.12),

R’D = (- F i4 · h i3 - Mi4 - G4h4) / lDС = (0,5 · 0,012 + 0,2·10-2 - 0,06 · 0,02) / 0,06 = 0,1 H

Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.