Рефераты. Анализ архитектуры ОЗУ ЭВМ различных поколений

SDRAM : день сегодняшний

 

Большинство проблем, связанных с низким быстродействием подсистемы оперативной памяти, позволяет решить память SDRAM. Первоначально разработанная для видеокарт ( как замена дорогой двухпроводной VRAM ), она оказалась отличным решением и для высокопроизводительных персональных компьютеров. С одной стороны, высокое быстродействие модулей памяти SDRAM и способность работать на высоких частотах наконец-то дали производителям компьютеров систему ОЗУ, удовлетворяющую сегодняшним требованиям к быстродействию. С другой стороны, использование всё той же элементной базы позволило достичь всего этого без повышения цены на готовые изделия.

Итак, в основе SDRAM лежат всё те же микросхемы стандартной DRAM. Каким же образом достигается увеличение быстродействия? Основных особенностей, по сравнению с классической памятью, три: чередование, пакетно - конвейерный режим и синхронизация работы с центральным процессором.

Чередование или расслоение банков достаточно известный способ работы. Сущность его в следующем. Если два последовательных обращения к памяти происходят к одним и тем же микросхемам, то второе запрошенное слово (или двойное слово - особой разницы здесь нет) будет получено только через время, равное полному циклу памяти. Связано это с довольно многими факторами, следующими из схемотехники DRAM. При обычном однобанковом устройстве модуля памяти, каждое последующее слово можно получать лишь через  50 нс. после предыдущего, а то и реже. Если разбить память на отдельные области (банки), то при последовательном доступе одно слово будет выдаваться первым банком, а следующим банком - второе и т. д. К тому моменту, когда снова нужно будет обратиться к первому банку, пройдет полный цикл и он будет готов выдать данные без задержки. Теоретически, при достаточно быстрой работе шины ускорение работы прямо пропорционально числу банков памяти. На практике это не достижимо: существуют накладные расходы, кроме того, программа может обращаться к памяти не последовательно, а к произвольным ячейкам, что легко сводит все преимущества расслоения на нет. Однако, в большинстве случаев деление на банки работает.

В модулях SDRAM используются четыре банка. Пакетный режим работы памяти сходен с алгоритмами в кэш - памяти. Суть его в том, что при обращении к ячейке с каким либо адресом, автоматически генерируется пакет данных, включающих как эту, так и несколько последующих ячеек. В результате при обращении к ним,  память сразу же, без задержек, готова выдать требующуюся информацию. Естественно, что пакетно - конвейерный режим повышает эффективность расслоения банков: практически всегда контроллер ОЗУ производит обращение по смежным адресам, не зависимо от желания процессора. Другой вопрос, что такое повышение эффективности работы может оказаться мнимым: считанные из памяти данные так и останутся невостребованными процессором.

Два этих типа ускорения работы применялись уже давно и в настоящее время стали стандартными. А вот еще одна отличительная особенность SDRAM по сравнению с другими типами оперативной памяти стала действительно новшеством. Речь идёт о синхронизации работы с центральным процессором.

 Раньше системы памяти функционировала асинхронно, поэтому, запросив из нее какие - либо данные процессор был вынужден входить в холостой цикл для того, чтобы их дождаться, так как время ожидания было неизвестным, и это не позволяло заниматься другой работой. Благодаря синхронизации деятельность памяти и процессора, последний всегда «знает», через сколько тактов он получит необходимые данные. Если результат обращения к памяти нужен не сразу, ЦП может выполнить некоторые команды вместо того, чтобы просто прекращать работу. Соответственно, возрастает эффективность работы современных процессоров, что повышает производительность всей вычислительной системы.

 У синхронности работы есть и другая отличительная особенность: теперь контроллер  оперативной памяти всегда заранее «знает», через сколько тактов процессору понадобятся данные из памяти, что позволяет ему  оптимизировать свою работу. Именно синхронную (по отношению к процессору) работу новой памяти обычно рассматривают как основную ее особенность, что заложено в названии: Synchronous DRAM.

  


Истинная скорость работы

 

Совокупное использование синхронизации работы, расслоения банков и пакетно-конвейерного режима способствует значительно (в несколько раз) ускорению работы системы памяти. Кроме того, SDRAM в состоянии работать без циклов задержки на частоте до 100 МГц, а наиболее качественные модули - до 125 МГц (на практике достигается до 133 МГц). Таким образом, время цикла памяти SDRAM составляет 7 - 10 нс. Существует мнение, что указываемое в спецификациях время цикла соответствует времени доступа. Считают, что у памяти SDRAM с частотой 100 МГц время доступа равно 10 нс., и она всегда работает в 5 раз быстрее, а у EDO DRAM - 50 нс. На самом деле это не так. И те и другие модули имеют полное время доступа 50 нс., то есть при обращении по случайному адресу данные будут получены именно через это время для обоих модулей памяти. При последовательном обращении второе слово модуль EDO выдаст через 20 нс., а модуль SDRAM - через 10 нс. Очевидно двукратное ускорение. При четырёх последовательных обращениях (наиболее распространённый случай) модулю EDO для выполнения запроса потребуется

50 + 3 х 20 = 110 нс., модулю SDRAM соответственно


50 + 3 х 10 = 80 нс.


Можно заметить, что никакого пятикратного роста нет - быстродействие SDRAM выше примерно на 50 % и полностью пропадает при большом числе обращений по случайным адресам.

 Впрочем, сегодня разговоры о том, что SDRAM безусловно быстрее, чем любые другие типы оперативной памяти, вполне уместны: если для EDO не существует в природе (а если и существует, то в продаже не появлялись) модули со временем доступа меньшим, чем упомянутые 50 нс., то для SDRAM время цикла 10 нс. отнюдь не предел. Сейчас наибольшее распространение получают микросхемы с временем цикла 8 и даже 7 нс. Время доступа для них равно уже не 50, а 40 нс., благодаря чему получается значительный выигрыш по сравнению с EDO. Если вернуться к нашему примеру, то SDRAM с частотой 125 МГц. на считывание четырёх слов затратит

 40 + 3 х 8 = 64 нс. впрочем, с такой скоростью может не справиться системная шина, официально пока не работающая с частотами больше 100 МГц.)



Прогресс технологии

           

С современными задачами SDRAM в принципе справляется неплохо. Однако уже в ближайшее время её возможностей может оказаться недостаточно. Во-первых, это касается скорости её работы, которую неплохо бы увеличить уже сегодня. А во-вторых, важно дальнейшее повышение рабочей частоты, хотя это становится очевидным не сразу. Дело в том, что повышать внутреннюю частоту центрального процессора путём увеличения множителя занятие не благодарное: на определённом этапе может появиться более дорогой процессор, чем существующая модель, но при этом практически не повышающий быстродействие системы ( которое зависит не только от скорости работы процессора, но и от частоты работы материнской платы). В этой связи очень показательна ситуация с компьютером на базе Intel Pentium 166 и 200. В своё время их стоимость отличалась в значительной степени, а по части производительности системы разрыв получался порядка 5% . Линию Pentium II пока спасает встроенный кэш второго уровня, но надолго ли его хватит? Скорее всего, недавно выпущенный Pentium II 500 станет последним в ряду процессоров с внешней частотой 100 МГц. это косвенно подтверждает и Intel, объявив, что для новых процессоров разрабатывается шина с частотой 200 МГц. а возможностей классической SDRAM уже недостаточно.

            Один из выходов в применении разработанной компанией Samsung памяти типа Double Data Rate SDRAM, называемой также SDRAM II. Ныне она уже стандартизирована ассоциацией и поддерживается некоторыми чипсетами. Благодаря отдельным косметическим улучшениям, данная память способна работать на частоте 200 МГц и обеспечивает в два раза большую производительность, чем SDRAM.

Ещё более производительной будет память SLDRAM. Она работает не с четырьмя, а с шестнадцатью банками и поддерживает частоту до 400 МГц. впрочем, это лишь проект, проводимый группой из двенадцати крупнейших производителей DRAM. Выход новой памяти на рынок ожидается в ближайшее время, пока имеются лишь образцы. Межотраслевой стандарт отсутствует.


Поскольку процессоры некоторых архитектур уже перешагнули барьер в 1 ГГц  повышение в будущем тактовой частоты обеспечиваемой SLDRAM  даже до 400 МГц, будет не достаточно необходимо по меньшей  мере 600 МГц. Пропускная способность 400 Мбайт/с тоже невелика: до сих пор, разрабатываются новые микросхемы памяти, все пытаются угнаться по быстродействию за процессорами, но ни о каком запасе скорости на пару-тройку лет развития и речи нет, а потребность в этом уже ощущается.

В общем обычные микросхемы DRAM просто не способны работать в необходимом сейчас режиме, поэтому нужен переход на новую технологию, которая уже предложена фирмой Rambus и называется RDRAM. У неё масса весьма существенных отличий от обычной памяти. Первоначальный вариант RDRAM, применённый в графических рабочих станциях ещё в 1995 году. По возможностям (600 МГц частота и 600 Мбайт/с пропускная способность) обгоняет SLDRAM, который ещё год придётся ждать.

В1997 году появилась улучшенная спецификация Concurrent RDRAM - по скорости она аналогична предыдущей, однако показывает хорошие результаты даже на маленьких блоках. Благодаря отличным характеристикам новой памяти, её лицензировало огромное количество производителей. уже сей час она применяется в мощных игровых приставках и многих платах расширения для РС. Данный проект получил поддержку Intel ещё в 1996 году. В следующем году фирма Rambus продемонстрирует новое улучшение RDRAM, которое называется Direct RDRAM. Память этого типа будет способна работать на частоте до   800 МГц, обеспечивая быстродействие 1,6 Гбайта/с для однобанкового модуля и 3,2 Гбайта для двухбанкового. Пока память типа Rambus не стандартизирована на высоком уровне, но этого вполне можно ожидать.

Микросхемы и модули     

 

          Выше речь шла о разнообразных чипах памяти. Именно они определяют основные характеристики собственно ОЗУ. Много лет назад, когда только начали появляться РС, память в компьютеры устанавливалась непосредственно теми же микросхемами. Разрядность микросхемы всего один бит, а ширина шины всего 8 бит плюс ещё девятый для контроля чётности. Значит, микросхемы нужно было вставлять по 9 штук сразу, а места они занимали очень много. Впрочем, тогда это было не столь уж важно: редко кто из пользователей расширял память компьютера, да и возможностей для такого расширения было не много. Потом уже стали применять модули памяти. Хотя было предложено несколько их вариантов, однако на долгое время закрепиться удалось лишь модулям типа SIMM - с однорядными печатными контактами. Первое время они имели разрядность 8 бит и 30 контактов. В результате вы 16- разрядных компьютерах они использовались парами, а в 32- разрядных четвёрками. Долгое время работали только с ними, затем им на смену появились 32- разрядные 72- контактные модули. Для владельцев распространённых тогда «четвёрок» они стали просто спасением: устанавливать или менять нужно было не более одного модуля. Такой тип модулей памяти «дожил» и до появления Pentium, и даже активно применялся в компьютерах этого класса. Однако теперь модули SIMM пришлось вставлять парами.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.