Рефераты. Кристаллические структуры твердых тел

Кристаллические структуры твердых тел

12

Раздел 1. Кристаллические структуры твердых тел

Лекции №1,2,3 Структура кристаллов ( 6 часов)

Введение . Роль, предмет и задачи физики твердого тела.

1.1. Кристаллические и аморфные тела.

1.2. Типы кристаллических решеток.

1.3. Кристаллографические обозначения (индексы Миллера - для узлов, направлений и плоскостей).

1.4. Ближний и дальний порядок в кристаллических веществах. Жидкие кристаллы.

1.5. Связь структуры с физическими свойствами веществ. Анизотропия кристаллов. Полиморфизм.

1.6. Упругое рассеяние рентгеновских лучей и нейтронов в кристаллах

1.7. Дефекты кристаллов.

Введение . Роль, предмет и задачи физики твердого тела.

Весь окружающий нас мир построен всего лишь из трех частиц: электро-нов, протонов и нейтронов, и можно лишь поражаться тому многообразию веществ, которые из них возникают. В зависимости от состава, температу-ры, давления вещество может быть в газообразном, жидком или твердом состоянии. Рядом со сверхтвердым алмазом и жаропрочным асбестом сосед-ствуют мягкий воск и легко воспламеняющаяся бумага. Наряду с прекрасно проводящими электрический ток медью и алюминием -- изоляторы, такие как фарфор и слюда. Задача физики -- понять первопричину всего этого многообразия окружающего нас мира, объяснить наблюдаемые феномено-логические закономерности и уметь предсказывать свойства новых веществ и соединений.

1.1. Кристаллические и аморфные тела.

Мы будем рассматривать в дальнейшем свойства только кристаллических тел, то есть свойства тел, образующих в твердом состоянии упорядочен-ную структуру. Реально переход тела из жидкой (или газообразной) фазы к твердое состояние не обязательно сопровождается кристаллизацией тела, а может приводить к аморфизации тела, в том числе и к образованию стекло-образного состояния, которое получается из вязкого расплава при быстром его охлаждении, т. е. твердением без кристаллизации.

При первом знакомстве с кристаллами прежде всего бросается в глаза их правильная многогранная форма. Этот образ кристалла в виде правильного многогранника возник у нас от драгоценных камней, природных минералок и искусственных кристаллов. Прозрачный кварц и красный рубин, мягкий тальк и сверхтвердый алмаз, микроскопические крупинки сахарного песка и гигантские сталактиты -- вот лишь некоторые представители удивитель-но многообразного царства кристаллов. На рис. 1.1.1 приведена фотография друзы горного хрусталя.

Такие кристаллы часто называют монокристаллами, чтобы отличить их от поликристаллов -- конгломерата микроскопических кристалликов, кото-рыми является большинство минералов и металлов. Как правило, нас будут интересовать физические свойства монокристаллов, так как свойства поли-кристаллов определяются не только свойствами самих микроскопических кристалликов, а во многом их взаимным расположением и способом соеди-нения

Рис. 1.1.1

Многие выращивали в школьные годы из водных растворов квасцов боль-шие октаэдры кристаллов, поражающие своей геометрической правильно-стью. Монокристалл может иметь и кубическую форму, как кристалл поваренной соли, форму ромбической призмы, как кристалл сегнетовой со-ли, октаэдра или плоского треугольника, как кристалл титаната бария. Его форма может быть и более сложной комбинацией простых геометрических фигур, но это -- его естественная форма. Таким его сотворила природа.

Естественно возникает вопрос, почему форма кристаллов так геометрически совер-шенна? Ответ был дан уже в конце XVI в. И. Кеплером и Р. Гуком. Правильную фор-му кристаллов поваренной соли и квасцов они объясняли тем, что эти кристаллы состоят из плотно упакованных частичек сферической формы. Идея решетчатого строения кристаллов буквально «носилась в воздухе», однако высказана она была впер-вые в конце XVII в. французским кристал-лографом Р. Аюи.

Вот какая легенда дошла до нас о счаст-ливом случае, натолкнувшем Аюи на мысль о внутреннем решетчатом строении крис-таллов.

Однажды, находясь в гостях у знакомого любителя и собирателя минералов, Агои взял в руки и рассматривал дру-зу призматических кристаллов кальцита. По оплошности Аюи друза упала на пол и разбилась, причем кристаллы раскололись на несколько кусков правильной ромбоэдрической формы. Дома Аюи расколол все кристаллы кальцита из собственной коллекции. Несмотря на то, что эти кристаллы обладали самой разнообразной формой и в ряде случаев вовсе не имели в своем облике граней ромбоэдра, у осколков наблюдались только эти гра-ни. Осколки, в свою очередь, раскалывались на все более а более мелкие ромбоэдры. "Увидев это, Аюи будто бы воскликнул: «Все найдено!»

Преимущественное раскалывание кристаллов по некоторым плоскостям, называемым плоскостями спайности, было известно давно. Однако толь-ко Аюи понял, что такое раскалывание кристалла, будучи продолжено до-статочно большое число раз, приведет к получению предельно малых мно-гогранных частичек, которые уже нельзя будет расколоть без нарушения природы их вещества. Из этих частичек, как из кирпичиков, строится кри-сталл, вырастая в природных или искусственных условиях. Эти кирпачики образуют как бы бесконечную (учитывая их малость по сравнению с макро-скопическим кристаллом) пространственную решетку.

Умозрительная, хотя и основанная на наблюдении реально существующе-го явления -- спайности, -- теория решетчатого строения кристаллов Аюи только через 130 лет получила свое экспериментальное подтверждение. В 1912 г. немецкие физики А. Лауэ, В. Фридрих и П. Книнпинг обнаружили дифракцию рентгеновских лучей в кристаллах. Поскольку рентгеновское излучение имеет электромагнитную природу, то их дифракция может про-исходить только па пространственной решетке кристалла, т. е. на цепочках атомов или ионов, расстояния между которыми сравнимы с длиной волны рентгеновского излучения. Реальность пространственной структуры была доказана.

Современные экспериментальные методы дают возможность «непосредст-венно увидеть» расположение атомов кристалла в пространстве. На рис. 1.1.2 и 1.1.3 показано, как выглядит кристалл вольфрама в ионном микроскопе и решетка висмута в туннельном микроскопе.

28,8 А

Рис. 1.1.2 Рис. 1.1.3

Принципиальными особенностями кристаллических тел являются их трансляционная симметрия, то есть тот факт, что в кристаллах их структу-ра (пространственное расположение ее элементов) полностью повторяется через определенное расстояние, называемое периодом решетки.

Принято говорить, что в отличие от дальнего порядка, наблюдаемого в кристаллах (упорядоченное расположение частиц в узлах кристаллической решетки сохраняется по всему объему кристалла), в жидкостях и аморфных телах имеет место ближний порядок в расположении частиц. Это означает, что по отношению к любой частице расположение ближайших соседей явля-ется упорядоченным, хотя и не так четко, как в кристалле, но по мере уда-ления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным и довольно быстро (на расстоянии 3-4 эффективных диаметров молекулы) порядок в расположении частиц пол-ностью исчезает.

Ошибочным является представление, что переход вещества из жидкого состояния в твердое означает сближение молекул, которое сопровождается увеличением сил сцепления между ними, а это и создает «твердость» веще-ства. Дело в том, что некоторые вещества (вода, висмут, сурьма) при кри-сталлизации увеличиваются в объеме, следовательно средние расстояния между соседними молекулами у этих веществ будут в твердой фазе больше, чем в жидкой, хотя, безусловно, в твердой фазе молекулы будут прочнее связаны между собой. Исходя из этого можно утверждать, что решающим фактором в процессе отвердевания кристаллических тел является не умень-шение расстояния между соседними частицами, а ограничение свободы их теплового движения. Само же ограничение обусловлено увеличением сил связи между частицами, которое возникает при упорядоченном расположе-нии их в кристалле.

Итак, причиной геометрически правильной внешней формы кристалла является геометрически правильное внутреннее его строение -- простран-ственная решетка. Пространственная решетка-- это, конечно, абстракция. Просто в пространстве, которое занимает кристалл, наблюдается правиль-ное, закономерное чередование атомов или ионов. Если их соединить вообра-жаемыми прямыми, то получим пространственную решетку, в узлах которой располагаются атомы или ионы.

Рис. 1.1.4

Для наглядности рассмотрим простой пример -- крис-талл хлористого натрия (поваренной соли) -- см. рис. 1.1.4. Структура этого кристалла представляет собой кубическую решетку, где каждый ион Na+ окружен шестью ионами Сl- на расстоянии 2,81 ? и, в свою очередь, каждый ион С1- окружен шестью ионами Na+. Поэтому ясно, что если крис-талл хлористого натрия выращивается в равновесных усло-виях, то при наслаивании одной сетки чередующихся ионов Na+ и Сl- на другую образуется монокристалл кубической внешней формы. Это очевидный пример. В других случаях, когда прост-ранственные решетки более сложны, внешнюю форму крис-таллов угадать не легко. Но есть общее свойство, которое однозначно показывает, как пространственная решетка определяет макро-скопическую форму кристалла, и это свойство -- симметрия.

Симметрия «правит» миром кристаллов. Это общее свойство, определяю-щее законы расположения структурных элементов в пространственной ре-шетке, взаимное расположение граней макроскопического кристалла, дик-тующее, какими физическими свойствами может обладать кристалл и по каким пространственным направлениям в нем эти свойства проявляются. Свойство симметрии является проявлением общих фундаментальных зако-нов природы. Вообще под симметрией следует понимать способность фигуры закономерно повторять в себе свои части.

Например, при повороте куба вокруг трех прямых, мысленно проведенных через центры противоположных граней, он будет повторять себя через ка-ждые 90° (см. рис. 1.1.4). Другой пример -- прямоугольный параллелепипед. Если мы разделим era мысленно плоскостями, проходящими через середи-ны ребер, и отразим фигуру относительно этих плоскостей, то увидим, что фигура совместилась сама с собой.

Симметрия внешней формы кристалла является проявлением геометри-чески правильного, симметричного расположения атомов и ионов. Симме-трия кристалла кубической формы проявляется в том, что при повороте его вокруг оси, соединяющей центры противоположных граней, он совмещается сам с собой. Теперь вернемся к кубической решетке. Считая ее бесконеч-ной (еще раз отметим, что в макроскопических масштабах мы имеем дело с громадным числом элементов кристалла; если ребро куба равно 1 см, то оно состоит примерно из 3 - 107 ионов!), проведем прямые через любую це-почку чередующихся ионов Na+ и С1- в том месте, где они расположены особенно близко друг к другу. Тогда при повороте решетки вокруг любой из прямых на 90° получаем решетку совершенно идентичную первоначальной.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.