Рефераты. Кристаллические структуры твердых тел

Первым, кто обнаружил жидкие кристаллы, т. е. понял, что это самосто-ятельное агрегатное состояние вещества, был австрийский ученый, ботаник Рейнитцер. Исследуя новое синтезированное им вещество холестерилбензо-ат, он в 1888 г. обнаружил, что при нагреве до температуры 145 °С кристал-лы этого вещества плавятся, образуя мутную, сильно рассеивающую свет жидкость. Затем по достижении температуры 179 °С жидкость становится прозрачной, т. е. начинает себя вести в оптическом отношении как обычная жидкость, например вода. Неожиданные свойства холестерилбензоат обна-руживал в мутной фазе. Рассматривая его под поляризационным микро-скопом, Рейнитцер обнаружил, что в этой фазе он обладает двулучепреломлением. Это означает, что показатель преломления этой фазы зависит от поляризации света. Но явление двупреломлсния -- это типично кристалли-ческий эффект, и в изотропной жидкости он не должен наблюдаться.

Более детальные исследования, к которым Рейнитцер привлек известного физика Лемана, показали, что наблюдаемый эффект не может быть обусло-влен двухфазностью этого состояния, т. е. мутная фаза полностью однород-на, она не является жидкостью, в которой содержатся кристаллиты. Это фазовое состояние и было названо Лсманом жидкокристаллическим.

Подобно обычным жидкостям, жидкие кристаллы текучи и принимают форму сосуда, в котором помещены. А с другой стороны, образующие их молекулы упорядочены в пространстве. Правда, это упорядочение не такое полное, как в обычных кристаллах. Пространственная ориентация молекул жидких кристаллов состоит в том, например, что все длинные оси молекул одинаково ориентированы. Для характеристики ориентационного порядка вводится вектор единичной длины L, называемый директором, направле-ние которого совпадает с направлением усредненной ориентации длинных осей молекул. Кроме того, вводится еще одна величина, параметр порядка 5, который характеризует степень ориентационного упорядочения молекул. Параметр порядка определяется следующим образом:

5=(3/2)(со?ё-1/3), (7.3)

где 9 -- угол между направлениями директора и мгновенным направлением длинной оси молекул, a cos2 в означает среднее по времени значение cos2 в.

ГЛ. 7, Кристаллические структуры твердых тел

Из этой формулы ясно, что параметр 5" может принимать значения от О до 1. Значение 5=1 соответствует полной ориентациопной упорядоченно-сти, a S -- 0 означает полный ориентационный беспорядок и соответствует переходу жидкого кристалла в изотропную жидкость.

В зависимости от характера упорядочения осей молекул жидкие кристал-лы разделяются на три разновидности: нематические, смектические и хо-лестерические.

Нематики. Чтобы схематично описать устройство нематиков, удобно молекулы, образующие его, представить в виде палочек. Для такой идеа-лизации есть физические основания. Молекулы жидких кристаллов пред-ставляют собой типичные для многих органических веществ образования со сравнительно большим молекулярным весом, порядка сотни, сильно вытя-нутые в одном направлении. Структура типичного нематика приведена на рис. 7.9 а. При наблюдении нематика через микроскоп видна причудлиэая совокупность пересекающихся линий, или, как их называют, нитей, предста-вляющих собой границы раздела между однодоменными областями. Отсюда и произошло название «нематик» -- по-гречески «нема» означает «нить».

t \

Рис. 7.9

При введенной нами идеализации структуру нематика следует предста-влять как «жидкость одинаково ориентированных палочек». Это означает, что центры тяжести расположены и движутся хаотически, как в жидкости, а ориентация всех осей при этом остается одинаковой и неизменной.

На самом деле, конечно, молекулы нематика совершают не только слу-чайные поступательные движения, но также и ориентациониые колебания. Поэтому палочки задают преимущественную, усредненную ориентацию. Ам-плитуда ориентациоиных колебаний молекул зависит от близости жидкого кристалла к точке фазового перехода в обычную жидкость, возрастая по ме-ре приближения температуры нематика к температуре фазового перехода. В точке фазового перехода ориентационное упорядочение молекул исчезает, и ориентация молекул становится полностью хаотической.

Смектики. В смектических жидких кристаллах степень упорядочения молекул выше, чем в нематиках. Схематически структура смектика выгля-дит так, как это показано на рис. 7.9 б. В смектиках, помимо ориентационной упорядоченности молекул, аналогичной случаю нематиков, существует ча-стичное упорядочение центров тяжести молекул -- молекулы смектика ор-ганизованы в слои, расстояния между которыми фиксированы, что и дает упорядочение слоев. Ориентация молекул в слое может быть как перпенди-кулярна плоскости слоя, так и направлена под некоторым углом к нему.

Общим для всех смектиков, независимо от описанных выше деталей их структуры, является слабое взаимодействие молекул, принадлежащих к различным слоям, по сравнению с взаимодействием молекул внутри одно-го слоя. По этой причине слои легко скользят друг относительно друга и смектики на ощупь мылоподобны. Отсюда и их название, в основе которого лежит греческое слово «смегма», что значит мыло. Аналогично нематикам, смектики обладают двулучепреломлением света. Если не созданы специ-альные условия, образец смектического жидкого кристалла, так же как и нематик, представляет собой совокупность малых областей (доменов) с оди-наковым упорядочением молекул только в их пределах.

Холестерики. Холестершш устроены более сложно, чем нематики и смектики. Локально холестерический жидкий кристалл имеет такую же структуру, что и нематик. Это означает, что в малом объеме упорядочение молекул холестерика можно характеризовать директором и параметром по-рядка. Отличия холестерика от нематика проявляются в больших по срав-нению с молекулярными размерами масштабах. Оказывается, что направле-ние директора в холестерике но остается неизменным по его объему даже для однодоменного образца. Существует такое направление, называемое хо-лестерической осью (на рис. 7.9 в это ось г), вдоль которого регулярным образом изменяется ориентация директора. Директор перпендикулярен этой оси и вращается вокруг нее, причем угол поворота директора tp линейно за-висит от расстояния z вдоль холестерической оси и может быть представлен в виде

V=~z. (7.4)

Расстояние р вдоль холестерической оси, на котором директор поворачива-ется на 360°, носит название шага холестерической спирали. Если провести воображаемые плоскости, перпендикулярные холестерической оси (как это сделано на рис. 7.9 б), то для каждой плоскости направление директора во всех ее точках оказывается фиксированным, однако изменяющимся от плоскости к плоскости.

Следует отметить, что мы рассмотрели лишь жидкие кристаллы, моле-кулы которых имеют удлиненную форму. Реально для жидких кристаллов существенным моментом является лишь анизотропия молекул, и поэтому жидкокристаллическую фазу могут образовывать и молекулы сплюснутой формы (дискообразные). Существует и другой класс жидких кристаллов -- лиотропные, к которым относятся, в частности, клеточные мембраны, игра-ющие большую роль в биологии. Мы ограничимся только подробно разо-бранными выше термотропными жидкими кристаллами, в которых фазо-вый переход в жидкокристаллическое состояние происходит при изменении температуры вещества.

Из всего многообразия физических свойств жидких кристаллов мы оста-новимся лишь на их оптических свойствах, которые определяют необычайно широкое использование жидких кристаллов для отображения информации. Прежде всего рассмотрим вопрос о том, как получить жидкий монокри-сталл, например, нематик. Стабилизировать структуру жидкого кристалла можно, например, с помощью поверхностных сил, задающих определенную ориентацию молекул на поверхностях, ограничивающих нематик, который, в свою очередь, индуцирует за счет межмолекулярных взаимодействии со-ответствующую ориентацию молекул в объеме.

Практика показывает, что полной однородности структуры можно добить-ся, поместив нематик между двумя пластинами, зазор между которыми не более 10-100 мкм. Пластины, ограничивающие нематик, как правило, изго-тавливают из прозрачных материалов: стекла, полимеров, токопроводящего прозрачного соединения окиси олова (SnO2) и т. д. Обработка поверхности пластин в простейшем случае состоит в их направленной полировке.

Можно создавать ориентацию молекул и внешними полями, как прави-ло, электрическими, ориентирующими молекулы однородным образом во всем объеме. Решающую роль в электрооптическом поведении жидких кри-сталлов играет анизотропия их диэлектрических свойств. Во внешнем по-ле жидкий кристалл стремится ориентироваться так, чтобы направление, в котором его диэлектрическая проницаемость Ј максимальна, совпадало с направлением поля; при этом L || Е или L _L E в зависимости от знака диэлектрической проницаемости е вещества. С переориентацией директо-ра связано изменение направления оптической оси, т. е. практически всех оптических свойств образца -- поглощения света, вращения плоскости по-ляризации, двойного лучепреломления и т. д. Если, например, в исходном состоянии вектор L параллелен прозрачным электродам и Ј > 0, то при не-котором критическом значении поля Е _l_ L произойдет переориентация L. Этот переход называется переходом Фредерикса.

Изменение ориентации L в нематическом жидком кристалле требует на-пряжения порядка одного вольта и мощностей порядка микроватт, что мож-но обеспечить непосредственной подачей сигналов с интегральных схем без дополнительного усиления. Поэтому жидкие кристаллы широко использу-ются в малогабаритных электронных часах, калькуляторах, индикаторах, в плоских экранах портативных телевизоров и компьютеров. Для отображе-ния цифровой информации в жидкокристаллических ячейках либо электро-ды выполняются в виде нужных цифр, либо нужная цифра воспроизводится путем «включения» определенной комбинации ячеек, выполненных в виде полосок.

Если в нематике внешнее поле приводит к сравнительно простой пере-ориентации молекул, то у холестерина наложение поля, перпендикулярного холестерической оси, приводит к увеличению шага спирали, угол поворота директора перестает быть линейной функцией координаты, а при достиже-нии некоторого критического значения поля холестерическая спираль пол-ностью раскручивается. Зависимость шага спирали холестерических кри-сталлов от температуры позволяет использовать пленки этих веществ для наблюдения распределения температуры на поверхности различных тел, при медицинской диагностике, визуализации теплового излучения.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.