Рефераты. Энергия Гиббса

Энергия Гиббса

13

ПЛАН

ВВЕДЕНИЕ 2

ЭНЕРГИЯ ГИББСА 3

ЗАКЛЮЧЕНИЕ 14

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 15

ВВЕДЕНИЕ

В своем реферате я расскажу об энергии Гиббса.

Гиббс Джозайя Уиллард (1839-1903), американский физик-теоретик, один из создателей термодинамики и статистической механики. Разработал теорию термодинамических потенциалов, открыл общее условие равновесия гетерогенных систем -- правило фаз, вывел уравнения Гиббса -- Гельмгольца, Гиббса -- Дюгема, адсорбционное уравнение Гиббса. Установил фундаментальный закон статистической физики -- распределение Гиббса. Предложил графическое изображение состояния трехкомпонентной системы (треугольник Гиббса). Заложил основы термодинамики поверхностных явлений и электрохимических процессов. Ввел понятие адсорбции.

ЭНЕРГИЯ ГИББСА

В начале своей работы я думаю необходимо представить основные понятия теории Гиббса.

ПРАВИЛО ФАЗ ГИББСА в термодинамике: число равновесно сосуществующих в какой-либо системе фаз не может быть больше числа образующих эти фазы компонентов плюс, как правило, 2. Установлено Дж. У. Гиббсом в 1873-76.

ГИББСА ЭНЕРГИЯ (изобарно-изотермический потенциал, свободная энтальпия), один из потенциалов термодинамических системы. Обозначается G, определяется разностью между энтальпией H и произведением энтропии S на термодинамическую температуру Т: G = H -- T·S. Изотермический равновесный процесс без затраты внешних сил может протекать самопроизвольно только в направлении убывания энергии Гиббса до достижения ее минимума, которому отвечает термодинамическое равновесное состояние системы. Названа по имени Дж. У. Гиббса.

ПОТЕНЦИАЛЫ ТЕРМОДИНАМИЧЕСКИЕ, функции объема, давления, температуры, энтропии, числа частиц и других независимых макроскопических параметров, характеризующих состояние термодинамической системы. К потенциалам термодинамическим относятся внутренняя энергия, энтальпия, изохорно-изотермический потенциал (Гельмгольца энергия), изобарно-изотермический потенциал (Гиббса энергия). Зная какие-либо потенциалы термодинамические как функцию полного набора параметров, можно вычислить любые макроскопические характеристики системы и рассчитать происходящие в ней процессы.

РАСПРЕДЕЛЕНИЕ ГИББСА каноническое, распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со средой, то распределение Гиббса называется большим каноническим. Для изолированной системы справедливо Гиббса распределение микроканоническое, согласно которому все микросостояния системы с данной энергией равновероятны. Названо по имени открывшего это распределение Дж. У. Гиббса.

Реакции присоединения радикалов к непредельным соединениям лежат в основе современной технологии получения полимеров, сополимеров и олигомеров. Эти реакции протекают при крекинге углеводородов, галоидировании олефинов, окислении непредельных соединений. Они широко используются в синтезе разнообразных соединений и лекарственных препаратов. Реакции присоединения атомов водорода и гидроксильных соединений к непредельным и ароматическим соединениям сопровождают фотолиз и радиолиз органических материалов и биологических объектов.

В реакции радикального присоединения типа
X·+ CH2=CHY

®

XCH2C·HY

рвется двойная С=С-связь и образуется связь С- X. Как правило, образующаяся
s -связь прочнее рвущейся p -С- С-связи, и поэтому реакция присоединения экзотермична. Это четко видно из сравнения энтальпии реакции DН и прочности образующейся связи D (Et-X) в табл. 1.

Другой важный фактор, влияющий на энтальпию реакции, -энергия стабилизации образующегося радикала XCH2C·H2Y: чем больше эта энергия, тем больше теплота присоединения радикала X· к олефину. Энергию стабилизации можно охарактеризовать, например, разницей прочности связей C- H в соединениях Pr- H и EtYHC- H. Ниже приведены данные, характеризующие вклад энергии стабилизации радикала CH3CH2C· H2Y, образующегося в результате присоединения метильного радикала к мономеру CH2=CHY, в энтальпию этой реакции.

Таблица 1.

Энтальпия, энтропия и энергия Гиббса присоединения атомов и радикалов X·к этилену.

X·

-DH,

кДж моль-1

-DS,

Дж моль-1 К-1

-DG (298 K),

кДж моль-1

H·

150

84

125

Cl·

82

88

56

C· H3

100

122

64

Me2C· H

92

134

52

PhC· H2

63

122

27

N· H2

81

109

49

HO·

122

100

93

CH3O·

82

118

46

HO2·

63

134

23

Y

H

C(O)OMe

Cl

CN

Ph

DPr- H -
DEtYHC·- H,
кДж моль-1

0.0

23.2

24.1

33.6

57.9

-DН,кДж моль-1

95.8

102.0

104.3

129.7

143.0

Видно, что чем больше энергия стабилизации радикала, тем меньше энтальпия реакции.

Все реакции присоединения протекают с уменьшением энтропии, т. к. происходит соединение двух частиц в одну (см. табл. 8.1). В силу этого для реакций присоединения энергия Гиббса, и при достаточной высокой температуре экзотермическая реакция присоединения является обратимой, т. к. DG = DH-TD S.

На любой процесс (реакцию) действуют два фактора:

Энатльпийный (экзо- или ендо) - Д H;

Энтропильный (ТДS).

При объединении этих двух факторов получаем:

ДН - ТДS = ДG

G = H - TS - Энергия Гиббса.

Физический смысл Энергии Гиббса:

если изменения ДGр,т меньше нуля - то самопроизвольно идет процесс в заданном направлении;

если изменения ДGр,т больше нуля - самопроизвольно идет обратный процесс, а прямая реакция не идет совсем;

если изменения ДGр,т равна нулю - это важнейшее термодинамическое равновесие.

Вывод: состояние термодинамического равновесия чрезвычайно устойчиво, так как при постоянстве Р, Т система выйти из равновесного состояния не может, так как выход равен возрастанию энергии Гиббса.

Чтобы система вышла из состояния равновесия необходимо изменить какие-либо внешние факторы (Р, Т, концентрация и так далее).

Есть понятие стандартное состояние Гиббса:

ДGf0 298 [кДж / моль] - справочная величина.

Пользуясь справочными данными можно рассчитать изменение энергии Гиббса любого процесс.

ДG 298 = УniД * ДGf0 298 - УnjД * ДGf0 298

продукт реагент

большинство процессов протекает при t более высоких чем стандартная (298). Для пересчета энергии Гиббса на более высокие температуры необходимы справочные данные по теплоемкостям, данные представленные в виде зависимости от температуры.

В справочниках эти данные обычно представлены в виде степенного ряда.

Cp0 = a + bT + cT2 + c'Т-2

где a, b, c, c' - для каждого вещества свои.

Когда необходимо рассчитать для процесса

ДCp0 = Дa + ДbT + ДcT2 + Дc'Т-2

Где Дa, Дb, Дc, Дc' - будучи функциями состояния, рассчитываются по формулам:

Дa = Уniа - Уnjа

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.