Рефераты. Защита информации

Конфиденциальность информации обеспечивается идентификацией и проверкой подлинности субъектов доступа при входе в систему по идентификатору (коду) и паролю, идентификацией внешних устройств по физическим адресам, идентификацией программ, томов, каталогов, файлов по именам, шифрованием и дешифрованием информации, разграничением и контролем доступа к ней.

Среди мер, направленных на защиту информации основными являются технические, организационные и правовые.

К техническим мерам можно отнести защиту от несанкционированного доступа к системе, резервирование особо важных компьютерных подсистем, организацию вычислительных сетей с возможностью перераспределения ресурсов в случае нарушения работоспособности отдельных звеньев, установку резервных систем электропитания, оснащение помещений замками, установку сигнализации и др.

К организационным мерам относятся: охрана вычислительного центра (кабинетов информатики); заключение договора на обслуживание компьютерной техники с солидной, имеющей хорошую репутацию организацией; исключение возможности работы на компьютерной технике посторонних, случайных лиц и т.п.

К правовым мерам относятся разработка норм, устанавливающих ответственность за вывод из строя компьютерной техники и уничтожение (изменение) программного обеспечения, общественный контроль за разработчиками и пользователями компьютерных систем и программ.

Следует подчеркнуть, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в компьютерных системах. В то же время свести риск потерь к минимуму возможно, но лишь при комплексном подходе к защите информации.

В следующих вопросах и темах мы рассмотрим проблемы защиты информации в автоматизированных системах обработки данных, особенности защиты информации в ПЭВМ, использование специализированного программного обеспечения для архивации данных и борьбе с компьютерными вирусами, а также основы криптографической защиты информации.

3. Защита информации в автоматизированных системах обработки данных

Под защитой информации в автоматизированных системах обработки данных (АСОД) понимается регулярное использование в них средств и методов, принятие мер и осуществление мероприятий с целью системного обеспечения требуемой надежности информации, хранимой и обрабатываемой с использованием средств АСОД.

Основными видами информации, подлежащими защите в АСОД, могут быть:

· исходные данные, т.е. данные, поступившие в АСОД на хранение и обработку от пользователей, абонентов и взаимодействующих систем;

· производные данные, т.е. данные, полученные в АСОД в процессе обработки исходных и производных данных;

· нормативно-справочные, служебные и вспомогательные данные, включая данные системы защиты;

· программы, используемые для обработки данных, организации и обеспечения функционирования АСОД, включая и программы защиты информации;

· алгоритмы, на основе которых разрабатывались программы (если они находятся на объектах, входящих в состав АСОД);

· методы и модели, на основе которых разрабатывались алгоритмы (если они находятся на объектах, входящих в состав АСОД);

· постановки задач, на основе которых разрабатывались методы, модели, алгоритмы и программы (если они находятся на объектах, входящих в состав АСОД);

· техническая, технологическая и другая документация, находящаяся на объектах АСОД.

Под угрозой информации в АСОД понимают меру возможности возникновения на каком-либо этапе жизнедеятельности системы такого явления или события, следствием которого могут быть нежелательные воздействия на информацию: нарушение (или опасность нарушения) физической целостности, несанкционированная модификация (или угроза такой модификации) информации, несанкционированное получение (или угроза такого получения) информации, несанкционированное размножение информации.

Общая классификационная структура задач по защите информации в АСОД включает в себя следующие группы:

I. Механизмы защиты:

введение избыточности элементов системы;

резервирование элементов системы;

регулирование доступа к элементам системы;

регулирование использования элементов системы;

маскировка информации;

контроль элементов системы;

регистрация сведений о фактах, событиях и ситуациях, которые возникают в процессе функционирования АСОД;

своевременное уничтожение информации, которая больше не нужна для функционирования АСОД;

сигнализация о состоянии управляемых объектов и процессов;

реагирование на проявление дестабилизирующих факторов с целью предотвращения или снижения степени их воздействия на информацию.

II. Управления механизмами защиты:

планирование защиты - процесс выработки рациональной (оптимальной) программы предстоящей деятельности. В общем случае различают долгосрочное (перспективное), среднесрочное и текущее планирование;

оперативно-диспетчерское управление защитой информации - организованное реагирование на непредвиденные ситуации, которые возникают в процессе функционирования управляемых объектов или процессов;

календарно-плановое руководство защитой - регулярный сбор информации о ходе выполнения планов защиты и изменении условий защиты, анализе этой информации и выработке решений о корректировке планов защиты;

обеспечение повседневной деятельности всех подразделений и отдельных должностных лиц, имеющих непосредственное отношение к защите информации - планирование, организация, оценка текущей деятельности, сбор, накопление и обработка информации, относящейся к защите, принятие текущих решений и др.

К основным методам защиты информации относятся:

повышение достоверности информации;

криптографическое преобразование информации;

контроль и учет доступа к внутреннему монтажу аппаратуры, линиям связи и технологическим органам управления;

ограничение доступа;

разграничение и контроль доступа к информации;

разделение доступа (привилегий);

идентификация и аутентификация пользователей, технических средств, носителей информации и документов.

4. Особенности защиты информации в ПЭВМ

Особенностями ПЭВМ с точки зрения защиты информации являются:

малые габариты и вес, что делает их легко переносимыми;

наличие встроенного внутреннего запоминающего устройства большого объема, сохраняющего записанные данные после выключения питания;

наличие сменного запоминающего устройства большого объема и малых габаритов;

наличие устройств сопряжения с каналами связи;

оснащенность программным обеспечением с широкими функциональными возможностями.

Основная цель защиты информации в ПЭВМ заключается в обеспечение ее физической целостности и предупреждении несанкционированного доступа к ней.

В самом общем виде данная цель достигается путем ограничения доступа посторонних лиц в помещения, где находятся ПЭВМ, а также хранением сменных запоминающих устройств и самих ПЭВМ с важной информацией в нерабочее время в опечатанном сейфе.

Наряду с этим для предупреждения несанкционированного доступа к информации используются следующие методы:

опознавание (аутентификация) пользователей и используемых компонентов обработки информации;

разграничение доступа к элементам защищаемой информации;

регистрация всех обращений к защищаемой информации;

криптографическое закрытие защищаемой информации, хранимой на носителях (архивация данных);

криптографическое закрытие защищаемой информации в процессе ее непосредственной обработки.

Для опознавания пользователей к настоящему времени разработаны и нашли практическое применение следующие способы.

1. Распознавание по простому паролю. Каждому зарегистрированному пользователю выдается персональный пароль, который он вводит при каждом обращении к ПЭВМ.

2. Опознавание в диалоговом режиме. При обращении пользователя программа защиты предлагает ему назвать некоторые данные из имеющейся записи (пароль, дата рождения, имена и даты рождения родных и близких и т.п.), которые сравниваются с данными, хранящимися в файле. При этом для повышения надежности опознавания каждый раз запрашиваемые у пользователя данные могут быть разными.

3. Опознавание по индивидуальным особенностям и физиологическим характеристикам. Реализация данного способа предполагает наличие специальной аппаратуры для съема и ввода соответствующих параметров и программ их обработки и сравнения с эталоном.

4. Опознавание по радиокодовым устройствам. Каждому зарегистрированному пользователю выдается устройство, способное генерировать сигналы, имеющие индивидуальные характеристики. Параметры сигналов заносятся в запоминающие устройства механизмов защиты.

5. Опознавание по специальным идентификационным карточкам. Изготавливаются специальные карточки, на которые наносятся данные, персонифицирующие пользователя: персональный идентификационный номер, специальный шифр или код и т.п. Эти данные на карточку заносятся в зашифрованном виде, причем ключ шифрования может быть дополнительным идентифицирующим параметром, поскольку может быть известен только пользователю, вводиться им каждый раз при обращении к системе и уничтожаться сразу же после использования.

Каждый из перечисленных способов опознавания пользователей имеет свои достоинства и недостатки, связанные с простотой, надежностью, стоимостью и др.

Разграничение доступа к элементам защищаемой информации заключается в том, чтобы каждому зарегистрированному пользователю предоставить возможности беспрепятственного доступа к информации в пределах его полномочий и исключить возможности превышения своих полномочий. Само разграничение может осуществляться несколькими способами.

1. По уровням секретности. Каждому зарегистрированному пользователю предоставляется вполне определенный уровень допуска (например, "секретно", "совершенно секретно", "особой важности" и т.п.). Тогда пользователю разрешается доступ к массиву (базе) своего уровня и массивам (базам) низших уровней и запрещается доступ к массивам (базам) более высоких уровней.

2. Разграничение доступа по специальным спискам. Для каждого элемента защищаемых данных (файла, базы, программы) составляется список всех пользователей, которым предоставлено право доступа к соответствующему элементу, или, наоборот, для каждого зарегистрированного пользователя составляется список тех элементов защищаемых данных, к которым ему предоставлено право доступа.

3. Разграничение доступа по матрицам полномочий. Данный способ предполагает формирование двумерной матрицы, по строкам которой содержатся идентификаторы зарегистрированных пользователей, а по столбцам - идентификаторы защищаемых элементов данных. Элементы матрицы содержат информацию об уровне полномочий соответствующего пользователя относительно соответствующего элемента.

4. Разграничение доступа по мандатам. Данный способ заключается в том, что каждому защищаемому элементу присваивается персональная уникальная метка, после чего доступ к этому элементу будет разрешен только тому пользователю, который в своем запросе предъявит метку элемента (мандат), которую ему может выдать администратор защиты или владелец элемента.

Регистрация всех обращений к защищаемой информации осуществляется с помощью устройств, которые контролируют использование защищаемой информации, выявляют попытки несанкционированного доступа к ней, накапливают статистические данные о функционировании системы защиты.

Криптографическое закрытие защищаемой информации, хранимой на носителях (архивация данных) заключается в использовании методов сжатия данных, которые при сохранении содержания информации уменьшают объем памяти, необходимой для ее хранения.

Криптографическое закрытие защищаемой информации в процессе ее непосредственной обработки осуществляется с помощью устройств программно-аппаратных комплексов, обеспечивающих шифрование и дешифрование файлов, групп файлов и разделов дисков, разграничение и контроль доступа к компьютеру, защиту информации, передаваемой по открытым каналам связи и сетям межмашинного обмена, электронную подпись документов, шифрование жестких и гибких дисков.

Программы архивации - это программы, позволяющие уменьшить размер файла для сохранения его на съемном носителе, передачи по сети, защите информации, а также для экономии места на диске. Суть их деятельности в следующем: программы архивации находят повторяющиеся фрагменты в файлах и записывают вместо них другую информацию, по которой затем можно будет восстановить информацию целиком. В основе архивации лежит принцип замены повторяющихся байтов указанием на количество и значение байта. Для разных файлов эффективность программ архивации разная. Так тексты сжимаются в два раза, файлы для черно-белых картинок в зависимости от насыщенности деталями - в два - четыре, и даже в пять раз, а вот программы от 0,1 до 2 раз. В среднем программы архивации дают выигрыш в полтора - два раза.

Любая программа-архиватор создает из Ваших файлов (одного или нескольких) другой файл, меньший по размеру. Такое действие называется архивацией или созданием архива, а файл, созданный на Вашем диске - архивированным или просто архивом.

Файлы можно скопировать в архив, т.е. создать архив и не удалять исходные файлы с диска, а можно переместить в архив, т.е. создать архив и удалить исходные файлы с диска.

Файлы, находящиеся в архиве, можно извлечь из архива (говорят также разархивировать или распаковать), т.е. восстановить их на диске в том виде, который они имели до архивации.

Программы-архиваторы запускаются немного сложнее, чем те программы DOS, о которых говорилось выше. Программе-архиватору надо обязательно указать имя выполняемого файла, имя архива, имена файлов, которые помещаются в архив, и параметр. Параметр указывает, какое действие должна выполнить программа: скопировать файлы в архив, переместить файлы в архив, извлечь файлы из архива и т.д. Параметр указывается всегда. Очень часто для подключения дополнительных возможностей программы используются переключатели. Вы можете не ставить ни одного переключателя или поставить их несколько. Параметр или переключатель - это, как правило, один символ, который ставится в командной строке DOS после имени программы-архиватора и перед именами архива и файлов.

В общем виде формат команды для запуска архиватора выглядит так:

<архиватор> <параметр> <переключатели> <имя архива> <имена файла>

Программ архивации довольно много. Отличаются они применяемыми математическими методами, скоростью архивации и разархивирования, а также эффективностью. Наиболее известные программы архивации - это PKZIP, LHARC, ARJ, RAR.

При помещении файлов в архив используются следующие форматы вызова:

а) для архиватора ARJ:

arj a <имя архива> <имена файлов... >

б) для архиватора LHARC:

lharc a <имя архива> <имена файлов... >

в) для архиватора PKZIP:

pkzip - a <имя архива> <имена файлов... >

Здесь

arj, lharc, pkzip - имена программ архивации;

a (add) - указание на то, что выполняется операция создания архива или добавления файлов в уже существующий архив;

имя архива - задает обрабатываемый архивный файл. Если этот архивированный файл не существует, он автоматически создается. Если расширение у файла не указано, то подразумевается расширение. arj для программ ARJ,. lzh для программы LHARC и. zip для программы PKZIP.

Чтобы переслать файлы в архив, а исходные удалить используется команда перемещения m (move):

а) для архиватора ARJ:

arj m <имя архива> <имена файлов... >

б) для архиватора LHARC:

lharc m <имя архива> <имена файлов... >

в) для архиватора PKZIP:

pkzip - m <имя архива> <имена файлов... >

Команды для архивации каталога со всеми входящими в него файлами и подкаталогами выглядит так:

а) для архиватора ARJ:

arj a - r <имя архива>

б) для архиватора LHARC:

lharc a - r <имя архива>

в) для архиватора PKZIP:

pkzip - a - rp <имя архива>

Чтобы распаковать архив - достать из него файлы, - надо вместо операции a (add) выполнить операцию e (extract), для чего ввести:

а) для архиватора ARJ:

arj e <имя архива> <имена файлов... >

б) для архиватора LHARC:

lharc e <имя архива> <имена файлов... >

в) для архиватора PKZIP:

pkunzip <имя архива> <имена файлов... >

Файлы извлекаются из архива по одному и записываются в текущий каталог.

Для извлечения файлов из архива с каталогами и подкаталогами надо набрать:

а) для архиватора ARJ:

arj x <имя архива с расширением>

б) для архиватора LHARC:

lharc x <имя архива с расширением>

в) для архиватора PKZIP:

pkunzip - d <имя архива с расширением>

Можно также создать самораскрывающийся архив, например для архиватора ARJ:

arj a - je <имя архива>

В результате Вы получите архив в виде командного файла, для распаковки которого достаточно встать на него и нажать клавишу Enter.

Norton Commander также позволяет осуществлять архивацию и разархивацию файлов с помощью комбинации клавиш Alt+F5 и Alt+F6. Выделите файлы, которые хотите архивировать и нажмите комбинацию клавиш Alt+F5. Norton Commander предложит создать архив с именем default. zip и поместить его в противоположное окно (рис.1). При этом Вы можете поменять имя, путь и метод архивации. Поставив крестик в строке Delete files afterwards, Вы прикажете Norton Commander уничтожить файлы после архивирования. А строка Include sub directories задает архивирование с подкаталогами. При разархивации с помощью комбинации клавиш Alt+F6 все делается аналогично.

Существует еще одна удобная программа архивации - RAR, разработанная российским программистом Евгением Рошалем из Ектеринбурга. Запустив ее, Вы окажетесь в оболочке программы с одним окном, напоминающем Norton Commander не только видом, но и клавишами управления файловыми функциями (рис.2). Здесь Вы можете заходить в каталоги, в том числе и в архивы - даже в те, что созданы другими архиваторами (ARJ, LHARC, PKZIP). Кроме того, Вы можете преобразовать архивы в самораскрывающиеся (F7), просмотреть в них любые файлы (F3), выделить нужные (клавишей Ins или по маске), а потом протестировать (клавиша F2), извлечь из архива в текущий (клавиша F4) или в произвольный каталог (комбинации клавиш Alt+F4, Shift+F4), удалить (клавиша F8) и т.д. Выйдя из архива, Вы можете создать в любом каталоге новый или обновить старый архив, добавив (клавиша F2) или переместив (клавиша F6) в него выделенные файлы, а клавишей F5 даже создать многотомный (разрезанный) архив на дискетах или жестком диске.

В операционной среде Windows используется аналог программы RAR - WinRAR. Запустив программу WinRAR, Вы окажетесь в окне программы, которое содержит строку заголовка, строку меню, панель инструментов и рабочую область, где отображаются папки и файлы.

Для того чтобы поместить папки или файлы в архив с помощью программы WinRAR, их необходимо выделить, предварительно выбрав нужный диск через меню Файл или с помощью панели инструментов. После этого следует нажать на панели инструментов кнопку Добавить и в появившемся диалоговом окне Имя архива и параметры (рис.4) указать, при необходимости имя диска и папку, куда будет помещен архив, а также обязательно имя архива.

После выбора всех параметров в диалоговом окне Имя архива и параметры нажмите кнопку ОК, запустится программа архивации и в появившемся диалоговом окне Создание архива (имя файла) будет отображаться процесс архивации (рис.5).

Для извлечения папок и файлов из архива необходимо выбрать имя архива, содержащее нужные папки и файлы, и нажать на кнопку Извлечь в на панели инструментов. При этом появится диалоговое окно Путь и параметры извлечения (Рис.6), в котором следует выбрать папку (диск), куда будут помещаться разархивированные папки (файлы) и указать необходимые параметры их извлечения. После выбора необходимых параметров следует нажать кнопку ОК, после чего заархивированные папки (файлы) будут извлечены из архива и помещены в указанную папку (диск).

Заключение

Метод шифрования с использованием датчика псевдослучайных чисел наиболее часто используется в программной реализации системы криптографической защиты данных. Это объясняется тем, что, он достаточно прост для программирования и позволяет создавать алгоритмы с очень высокой криптостойкостью. Кроме того, эффективность данного метода шифрования достаточно высока. Системы, основанные на этом методе позволяют зашифровать в секунду от нескольких десятков до сотен Кбайт данных.

Основным преимуществом метода DES является то, что он - стандартный. Важной характеристикой этого алгоритма является его гибкость при реализации и использовании в различных приложениях обработки данных. Каждый блок данных шифруется независимо от других, поэтому можно осуществлять независимую передачу блоков данных и произвольный доступ к зашифрованным данным. Ни временная, ни позиционная синхронизация для операций шифрования не нужна. Алгоритм вырабатывает зашифрованные данные, в которых каждый бит является функцией от всех битов открытых данных и всех битов ключей. Различие лишь в одном бите данных даёт в результате равные вероятности изменения для каждого бита зашифрованных данных. DES может быть реализован аппаратно и программно, но базовый алгоритм всё же рассчитан на реализацию в электронных устройствах специального назначения.

Это свойство DES выгодно отличает его от метода шифрования с использованием датчика ПСЧ, поскольку большинство алгоритмов шифрования построенных на основе датчиков ПСЧ, не характеризуются всеми преимуществами DES. Однако и DES обладает рядом недостатков.

Самым существенным недостатком DES считается малый размер ключа. Стандарт в настоящее время не считается неуязвимым, хотя и очень труден для раскрытия (до сих пор не были зарегистрированы случаи несанкционированной дешифрации. Ещё один недостаток DES заключается в том, что одинаковые данные будут одинаково выглядеть в зашифрованном тексте.

Алгоритм криптографического преобразования, являющийся отечественным стандартом и определяемый ГОСТ 28147-89, свободен от недостатков стандарта DES и в то же время обладает всеми его преимуществами. Кроме того в него заложен метод, с помощью которого можно зафиксировать необнаруженную случайную или умышленную модификацию зашифрованной информации. Однако у алгоритма есть очень существенный недостаток, который заключается в том, что его программная реализация очень сложна и практически лишена всякого смысла.

Теперь остановимся на методе RSA. Он является очень перспективным, поскольку для зашифрования информации не требуется передачи ключа другим пользователям. Но в настоящее время к этому методу относятся с подозрительностью, поскольку не существует строго доказательства, что не существует другого способа определения секретного ключа по известному, кроме как определения делителей целых чисел. В остальном метод RSA обладает только достоинствами. К числу этих достоинств следует отнести очень высокую криптостойкостью, довольно простую программную и аппаратную реализации. Следует заметить, что использование этого метода для криптографической защиты данных неразрывно связано с очень высоким уровнем развития вычислительной техники.

Список литературы

1. С. Мафтик, "Механизмы защиты в сетях ЭВМ", изд. Мир, 1993 г.

2. В. Ковалевский, "Криптографические методы", Компьютер Пресс 05.93 г.

3. В. Водолазкий, "Стандарт шифрования ДЕС", Монитор 03-04 1992 г.

4. С. Воробьев, "Защита информации в персональных ЗВМ", изд. Мир, 1993 г.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.