Рефераты. Внутренние и периферийные устройства ПК

Видеоадаптер также управляет цветовой гаммой изображения. Режим VGA использует 16-цветные изображения (полбайта на пиксель), СуперVGA начинается с 256-цветных (1 байт) изображений. Вполне телевизионное качество обеспечивают 65536 цветов (16 бит или 2 байта на пиксел), обозначаемое HighColor, а 16777216 цветов (24 бита или 3 байта), обозначаемое TrueColor - это все, что способен различить наш глаз. В режиме TrueColor идет отдельное управление градациями яркости каждого из трех лучей электронной трубки: красным (Red) - 1 байт (256 градаций), зеленым (Green) - 1 байт (256 градаций) и синим (Blue) - 1 байт (256 градаций), что и дает указанное 16,7 М сочетаний.

Теперь определим необходимый объем встроенной видеопамяти. Чтобы узнать объем памяти видеоадаптера для обеспечения требуемого режима, достаточно умножить общее число точек на экране на число байт, обеспечивающих цвет одной точки, например: 640 х 480 х 3 байта = 921600 байт или с округлением до стандартного значения - 1 Мбайт.

Большая часть изображений строится из простейших стандартных элементов - прямая, прямоугольник, эллипс и т. п. Для их рисования созданы специализированные сопроцессоры - видеоускорители (Video Accelerator). Из наиболее распространенных моделей, Cirrus Logic - самые медленные, Trident - быстрее, а Western Digital (Paradize) - самые быстрые.

Ускорители обычно входит в состав видеоадаптера, и различаются по своим параметрам, но все они обеспечивают вывод фрагментов, характерных для Windows, которые ей необходимы. Большинство нынешних видеоадаптеров содержат аппаратно реализованные ускорители (встроенные процессоры, иногда 2 на плате с собственным охлаждением) и поэтому стоят заметно дороже: несколько сотен долларов.

2. Периферийное оборудование

2.1. Устройства ввода

Клавиатура. За время, прошедшее с выпуска первого РС, фирма IBM разработала 3 типа клавиатур (рис. 2-1):

- 83-клавишная клавиатура РС ХТ;

- 84-клавишная клавиатура АТ;

- 101-клавишная улучшенная клавиатура.

Улучшенная 101-клавишная клавиатура была выпущена в 1986 году, она разработана в соответствии с международными правилами и требованиями и превратилась в стандарт.

Клавиатура может быть условно разделена на четыре области:

- область печати (алфавитно-цифровая клавиатура);

- дополнительная цифровая клавиатура;

- клавиши управлением курсором и экраном;

- функциональные клавиши.

В двух язычных вариантах клавиатура содержит 102 клавиши и раскладка в ней отличается от американской. Клавиатура состоит из набора переключателей, объединенных в матрицу. При нажатии на клавишу процессор, установленный в самой клавиатуре, определяет координаты нажатой клавиши в матрице. В клавиатуре установлен собственный буфер емкостью 16 байт, в который заносятся данные при слишком быстром нажатии клавиш.

Клавиатура сама представляет собой небольшой компьютер. Связь с системным блоком осуществляется через последовательную линию связи, данные по которой передаются «кадрами» по 11 бит, 8 из которых - данные, а остальные - синхронизирующие и управляющие. Эта связь - двунаправленная: клавиатура может, как передавать, так и принимать данные. «Кадр» данных содержит скан-код нажатой клавиши. Фирма IBM назначила каждой клавише уникальный номер и в соответствии с этими номерами для 102 клавишной клавиатуры убрана клавиша 29, расположенная над клавишей Enter, которая из-за этого стала занимать два ряда, и приняла форму угла, и добавлены клавиши 42 и 45. Так, что различить 101 - и 102 - клавишные клавиатуры легко по виду Enter.

При переходе от операционной системы MS-DOS к Windows95, для удобства работы с ней, выпустили клавиатуру, отмеченную логотипом Windows и снабженную дополнительными клавишами (с двух сторон между Ctrl и Alt и также с данным логотипом). С помощью них можно вызвать главное меню программ, а также дополнительной клавишей - меню для работы с выделенным фрагментом текста.

Мышь изобрел в 1964 году Дуглас Энглбарт в Стэндвордском исследовательском институте. Официально это устройство было названо “указателем XY-координат для дисплея”. Впервые мышь была использована в компьютере в 1973 году фирмой Xerox для графического интерфейса. В 1979 году эту идею заимствовала фирма Apple, применив ее в последствии в компьютере Lisa (1983 г.) и Macintosh (1984 г.). Дальнейшее широкое распространение мыши вызвано переходом на операционные оболочки, а затем операционные системы с графическим пользовательским интерфейсом (Windows, OS/2 и т. п.).

Не смотря на теперешнее разнообразие этих устройств, все они работают практически одинаково. Рука двигает маленькую коробочку. В ней - шарик, катающийся по поверхности стола. К шарику прижаты два взаимно перпендикулярных ролика, которые он вращает. Датчики поворота роликов передают сигналы в компьютер. Хвост из проводов, по которым идут сигналы, дал устройству прозвище «мышь». Впрочем, можно обойтись и без проводов (рис. 2-2). Нынешние радиопередатчики достаточно малы, чтобы спрятать их в мышку, и достаточно слабы, чтобы не мешать окружающим. Такая «бесхвостая» мышь в работе удобнее, но стоит дороже обычной.

В первых мышах датчики поворота были электромеханические. С роликом связан диск, скользящий по контактной щетке. На диске чередуются проводящие и изоляционные штрихи. И в электрической цепи возникают импульсы тока. Но контакты быстро изнашиваются, а еще быстрее загрязняются. Чтобы не терять импульсы, используют оптический датчик, состоящий из пары «светодиод - фотодиод», между которыми расположен зубчатый диск.

Оптика позволяет вообще отказаться от дисков и шарика. Под коробочку с фотоэлементами подкладывают пластину с перекрещенными линиями. При движении мыши каждая такая линия дает импульс. Однако разрешающая способность оптики ограничена нарисованными на подкладке линиями, да и саму подкладку надо всегда иметь вместе с мышью, поэтому оптические мыши пока не вытеснили обычные (роликовые).

Число импульсов на единицу пройденного мышкой пути зависит от ее конструкции. Но программа (драйвер), следящая за этими импульсами, может в зависимости от настройки какие-то из них пропускать. Так регулируется зависимость перемещений указателя от движений мыши. Сложные драйверы меняют чувствительность в зависимости от частоты импульсов. Благодаря этому можно коротким, но быстрым движением перебросить указатель через весь экран, а затем плавно привести его точно в нужное место.

Кнопки на мыши позволяют отмечать места, в которых оказывается ее указатель. В мышках фирмы Apple кнопка всего одна - программы построены так, что ее хватает. Мышки Microsoft (в соответствии с особенностями программ этой фирмы) двухкнопочные. Lagitech выпускает трехкнопочные мыши. Но средняя (третья) кнопка нужна очень редко, и в двухкнопочных вместо нее используют одновременное нажатие двух имеющихся.

Для перемещения мыши нужно место, хотя бы размером с обычную книгу. Причем гладкое (иначе указатель будет двигаться рывками), но не слишком (чтобы шарик не проскальзывал). Если на столе не хватает места для подкладки под мышь или стола нет вообще, как при работе Laptop или Noutbook, то мышку можно перевернуть и двигать ее шарик непосредственно пальцем. Можно перенести и кнопки на новый верх - получится Track Ball - «следящий шар». (Хотя, это название обычно не переводят). Трекбол не требует места. Большинство переносных компьютеров (ноутбуков) имеют трекбол, встроенный прямо в клавиатуру. Управлять трекболом (при должном навыке) можно гораздо точнее, чем мышью - если, конечно, шар достаточно велик. И надежность лучше: провода не перегибаются постоянно, поэтому не ломаются.

Вводить графическую информацию в компьютер можно вручную. Устройств оцифровки графики много, и они очень разнообразны. Одно из них так и называется Digitiser - «оцифровщик» (обычно это название не переводят).

Дигитайзер оборудован прицельным приспособлением (лупа с перекрестием), которое оператор наводит на интересующие его точки. Если нажать кнопку на прицеле, координаты точки фиксируются. Таким способом можно ввести в компьютер характерные точки чертежа, чтобы по ним восстановить линии. Зачастую это проще, чем сканировать весь чертеж и потом восстанавливать линию из множества точек.

Матричные устройства, например телевизор, синтезируют двумерное изображение из строк, а строки - из точек. Обратным преобразованием - разложением плоскости на линии, а линий на точки (разверткой, сканированием) для передачи по последовательным линиям связи - заняты телекамеры и сканеры. Телекамера использует электронную развертку. Обычный сканер, по крайней мере, в одном из направлений, развертывает изображение механически - перемещая либо бумагу (рулонный), либо светочувствительные элементы (планшетный). Перемещать можно и весь сканер по бумаге - как правило, вручную (рис. 2-3).

Такие сканеры намного меньше и дешевле обычных, но требуют хорошей тренировки оператора и сложных программ, компенсирующих неизбежные дрожания и перекосы. А в профессиональных издательских системах работают барабанные сканеры - лист с изображением крепится на массивном цилиндре, вращающемся перед фотоэлементами. Так меньше помех от неравномерности движения.

Планшетный сканер можно оборудовать устройством автоматической подачи листов. Это не только удобно, но и уменьшает перекос изображения (что особенно важно при вводе текстов).

Сканеры, в отличие от телекамер, сами подсвечивают рассматриваемую поверхность. Это гарантирует стабильное освещение и правильную цветопередачу или градации серого цвета черно-белого сканера.

Разрешающая способность современных «бытовых» сканеров 300 - 800 dpi, дорогих профессиональных - несколько тысяч. Существуют (входят в комплект большинства сканеров и иногда встраиваются в них на аппаратном уровне) программы интерполяции - расчета уровней яркости в промежуточных точках. Они позволяют формировать изображение, соответствующее разрешающей способности в 2 - 4 раза большей. Изготовители для рекламы указывают в первую очередь эту, программную, разрешающую способность, реальные возможности аппаратуры часто оказываются ниже.

Помимо ввода иллюстраций сканер можно использовать для чтения текстов. Программы оптического распознавания символов (Optical Character Recognition) пока слишком чувствительны и к разрешающей способности (причем далеко не всегда ее повышение улучшает распознавание), и к равномерности освещения. Достаточно не плохие результаты распознавания дает пакет FineReader, причем в версии 4.0 заложены возможности распознавания рукописного текста и структуры бланков, что позволяет, например, распознавать отсканированные первичные бухгалтерские документы, заполненные вручную.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.