Рефераты. Виртуальные частные сети. Технология MPLS VPN

1) Перегрузка Р-маршрутизаторов информацией о маршрутах. Одной из основных проблем крупных IP-магистралей является большое количество ресурсов (памяти, процессорных мощностей, полосы пропускания), необходимых для хранения данных о маршрутизации. Если взять IP-магистраль и пустить по ней данные о маршрутах всех корпоративных сетей, Р-маршрутизаторы никогда с ней не справятся.

2) Несогласованные (несмежные) адресные пространства. Обычно Интернет-сервис-провайдеры (ISP) стараются присваивать адреса осмысленно. Это значит, что адрес системы должен указывать на место, в котором эта система подключается к сети ISP. Однако многие корпоративные сети имеют адресные схемы, которые трудно совместить с магистральной топологией любого сервис-провайдера. В этих схемах адреса сайтов распределяются без какого-либо учета точки, в которой осуществляется подключение к провайдерской сети. Это сокращает возможности агрегации маршрутов и увеличивает объем данных о маршрутах, которые передаются по Р-сети.

3) Частная адресация в С-сетях. Адреса во многих корпоративных сетях не являются уникальными. Это значит, что тот или иной адрес является уникальным только в пределах одного предприятия, но теряет уникальность при связи между предприятиями. Если IP-магистраль сервис-провайдера используется как общая магистраль для двух разных корпоративных сетей и если адреса в этих сетях не являются уникальными, Р-маршрутизаторы не смогут гарантировать доставку пакетов по месту назначения.

4) Подслушивание. Для защиты данных нужно устанавливать шифрованные туннели «точка--точка» между каждой парой СЕ-маршрутизаторов (модель IPSec). Это решение хорошо подходит для оверлейной модели, полькольку она и без того использует туннель «точка--точка» между парами «соседних» СЕ-маршрутизаторов. Для одноранговой модели это решение подходит не столь хорошо, потому что здесь СЕ-маршрутизатор никогда не может определить, куда он будет передавать следующий пакет.

2.6 Варианты построения

Можно выделить четыре основных варианта построения сети VPN, которые используются во всем мире. Данная классификация предлагается компанией Check Point Software Technologies, которая не без основания считается законодателем моды в области VPN. Так, например, по данным независимых консалтинговых и аналитических агентств компания Check Point захватила 52% мирового рынка VPN-решений (по данным Dataquest).

Вариант "Intranet VPN", который позволяет объединить в единую защищенную сеть несколько распределенных филиалов одной организации, взаимодействующих по открытым каналам связи. Именно этот вариант получил широкое распространение во всем мире, и именно его в первую очередь реализуют компании-разработчики.

Вариант "Remote Access VPN", который позволяет реализовать защищенное взаимодействие между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который подключается к корпоративным ресурсам из дома (домашний пользователь) или через notebook (мобильный пользователь). Данный вариант отличается от первого тем, что удаленный пользователь, как правило, не имеет статического адреса, и он подключается к защищаемому ресурсу не через выделенное устройство VPN, а прямиком со своего собственного компьютера, на котором и устанавливается программное обеспечение, реализующее функции VPN. Компонент VPN для удаленного пользователя может быть выполнен как в программном, так и в программно-аппаратном виде. В первом случае программное обеспечение может быть как встроенным в операционную систему (например, в Windows 2000), так и разработанным специально (например, АП "Континент-К"). Во втором случае для реализации VPN используются небольшие устройства класса SOHO (Small Office\Home Office), которые не требуют серьезной настройки и могут быть использованы даже неквалифицированным персоналом. Такие устройства получают сейчас широкое распространение за рубежом.

Вариант "Client/Server VPN", который обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. Такая необходимость очень часто возникает в тех случаях, когда в одной физической сети необходимо создать несколько логических сетей. Например, когда надо разделить трафик между финансовым департаментом и отделом кадров, обращающихся к серверам, находящимся в одном физическом сегменте.

Последний вариант "Extranet VPN" (Рисунок 4) предназначен для тех сетей, к которым подключаются пользователи "со стороны" (партнеры, заказчики, клиенты и т.д.), уровень доверия к которым намного ниже, чем к своим сотрудникам. Хотя по статистике чаще всего именно сотрудники являются причиной компьютерных преступлений и злоупотреблений.

Рисунок 4. Последний вариант "Extranet VPN"

ГЛАВА 3. ТЕХНОЛОГИЯ MPLS-VPN

Виртуальные частные сети на основе MPLS (MPLS VPN) привлекают сегодня всеобщее внимание. Количество ведущих провайдеров услуг, предлагающих своим клиентам воспользоваться новым видом сервиса для экономичного построения сетей Intranet и Extranet, постоянно растет, делая MPLS VPN доступными для пользователей все большего числа стран и регионов. От других способов построения виртуальных частных сетей, подобно VPN на базе ATM/FR или IPSec, MPLS VPN выгодно отличает высокая масштабируемость, возможность автоматического конфигурирования и естественная интеграция с другими сервисами IP, которые сегодня входят в обязательное меню любого успешного провайдера: доступом к Internet, Web и почтовыми службами, хостингом.

3.1 Компоненты MPLS VPN

Прежде всего, сеть MPLS VPN делится на две области: сети IP клиентов и внутренняя (магистральная) сеть MPLS провайдера, которая необходима для объединения сетей клиентов (см. Рисунок 5).

Рисунок 5. Компоненты MPLS VPN

В общем случае у каждого клиента может быть несколько территориально обособленных сетей IP, каждая из которых в свою очередь может включать несколько подсетей, связанных маршрутизаторами. Такие территориально изолированные сетевые «островки» корпоративной сети принято называть сайтами. Принадлежащие одному клиенту сайты обмениваются пакетами IP через сеть провайдера и образуют виртуальную частную сеть этого клиента. Например, о корпоративной сети, в которой сеть центрального отделения связывается с тремя удаленными филиалами, можно сказать, что она состоит из четырех сайтов. Для обмена маршрутной информацией в пределах сайта узлы пользуются одним из внутренних протоколов маршрутизации (Interior Gateway Protocol, IGP), область действия которого ограничена автономной системой: RIP, OSPF или IS-IS.

Маршрутизатор, с помощью которого сайт клиента подключается к магистрали провайдера, называется пограничным маршрутизатором клиента (Customer Edge router, CE). Будучи компонентом сети клиента, CE ничего не знает о существовании VPN. Он может быть соединен с магистральной сетью провайдера несколькими каналами.

Магистральная сеть провайдера является сетью MPLS, где пакеты IP продвигаются на основе не IP-адресов, а локальных меток (более подробно о технологиях этого типа можно прочитать в статье Н. Олифер «Пути-дороги через сеть» в данном номере). Сеть MPLS состоит из маршрутизаторов с коммутацией меток (Label Switch Router, LSR), которые направляют трафик по предварительно проложенным путям с коммутацией меток (Label Switching Path, LSP) в соответствии со значениями меток. Устройство LSR -- это своеобразный гибрид маршрутизатора IP и коммутатора, при этом от маршрутизатора IP берется способность определять топологию сети с помощью протоколов маршрутизации и выбирать рациональные пути следования трафика, а от коммутатора -- техника продвижения пакетов с использованием меток и локальных таблиц коммутации. Устройства LSR для краткости часто называют просто маршрутизаторами, и в этом есть свой резон -- они с таким же успехом способны продвигать пакеты на основе IP-адреса, если поддержка MPLS отключена.

В сети провайдера среди устройств LSR выделяют пограничные маршрутизаторы (Provider Edge router, PE), к которым через маршрутизаторы CE подключаются сайты клиентов и внутренние маршрутизаторы магистральной сети провайдера (Provider router, P). Маршрутизаторы CE и PE обычно связаны непосредственно физическим каналом, на котором работает какой-либо протокол канального уровня -- например, PPP, FR, ATM или Ethernet. Общение между CE и PE идет на основе стандартных протоколов стека TCP/ IP, поддержка MPLS нужна только для внутренних интерфейсов PE (и всех интерфейсов P). Иногда полезно различать относительно направления продвижения трафика входной PE и выходной (удаленный) PE.

В магистральной сети провайдера только пограничные маршрутизаторы PE должны быть сконфигурированы для поддержки виртуальных частных сетей, поэтому только они «знают» о существующих VPN. Если рассматривать сеть с позиций VPN, то маршрутизаторы провайдера P непосредственно не взаимодействуют с маршрутизаторами заказчика CE, а просто располагаются вдоль туннеля между входным и выходным маршрутизаторами PE.

Маршрутизаторы PE являются функционально более сложными, чем P. На них возлагаются главные задачи по поддержке VPN, а именно разграничение маршрутов и данных, поступающих от разных клиентов. Маршрутизаторы PE служат также оконечными точками путей LSP между сайтами заказчиков, и именно PE назначает метку пакету IP для его транзита через внутреннюю сеть маршрутизаторов P.

Пути LSP могут быть проложены двумя способами: либо с применением технологии ускоренной маршрутизации (IGP) с помощью протоколов LDP, либо на основе технологии Traffic Engineering с помощью протоколов RSVP или CR-LDP. Прокладка LSP означает создание таблиц коммутации меток на всех маршрутизаторах PE и P, образующих данный LSP

В совокупности эти таблицы задают множество путей для разных видов трафика клиентов. В VPN применяется различная топология связей: полносвязная, «звезда» (часто называемая в англоязычной литературе hub-and-spoke) или ячеистая.

3.2 Путешествие пакета по сети MPLS VPN

Теперь, когда мы обсудили схему распространения маршрутной информации по сети MPLS VPN, давайте посмотрим, как перемещаются данные между узлами одной VPN.

Пусть, например, из сайта 1 в VPN A узел с адресом 10.2.1.1/16 отправляет пакет узлу сайта 2 этой же VPN, имеющему адрес 10.1.0.3/16 (см. Рисунок 6).

Рисунок 6. Путешествие пакета между сайтами VPN

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.