Рефераты. SOC MPC8640D: архітектура систем, особливості команд, можливість використання

SOC MPC8640D: архітектура систем, особливості команд, можливість використання

Курсова робота

SOC MPC8640D: архітектура систем, особливості команд, можливість використання

Вступ

PowerPC (або скорочено PPC) - мікропроцесорна RISC -архітектура, створена в 1991 альянсом компанії Apple , IBM і Motorola , відомому як AIM.

Історія PowerPC починається з прототипу мікросхеми 801, створеного в IBM в кінці 1970-х На основі ідей Джона Кока про RISC -архітектурі. Далі вона була продовжена 16 - реєстрових дизайном IBM / RT в 1980-х роках, який в подальшому розвинувся в архітектуру POWER , представлену RISC System/6000 на початку 1990-х . Дизайн POWER був заснований на архітектурі попередніх RISC- процесорів , таких як IBM 801 , та архітектури MIPS . Цей мікропроцесор POWER, одне з перших суперскалярні втілень архітектури RISC, був високопродуктивним і багатоядерних. У IBM скоро зрозуміли, що їм потрібно одночіповим дизайн, в якому не були б втілені деякі інструкції POWER, щоб лінія процесорів RS/6000 включала вирішення всіх рівнів продуктивності, і робота над одночіповим мікропроцесором POWER почалася.

IBM запропонувала Apple співпрацю в розробці сімейства одночіповим процесорів, заснованих на архітектурі POWER. Незабаром після цього Apple, як один з найбільших замовників мікропроцесорів класу настільних систем Motorola , попросила Motorola приєднатися до цього співробітництва, тому вважала як Apple, що Motorola, з її довгою історією роботи з Apple, буде здатна виробляти більшу кількість мікропроцесорів, ніж IBM. Цей потрійний союз став відомим як AIM, за першими літерами Apple, IBM, Motorola. Для Motorola вступ до цього союзу було надзвичайно вигідним. Це дозволяло їм продавати добре протестований і могутній RISC-процесор, не витрачаючи грошей на його розробку. У них також був великий покупець цих процесорів - Apple, і ще один - потенційний - в особі IBM, яка могла б не виробляти свої молодші версії POWER, а купувати їх в Motorola

1. Загальна частина

1.1 Історія виникнення та стисла характеристика мікропроцесора Power

PowerPC e200

PowerPC e200 сімейство 32-розрядних ядер Power Architecture мікропроцесор, розроблений корпорацією Freescale для первинного використання в автомобільних і промислових систем управління. Ядра призначені для формування частини процесора в системі-на-чіпі (SoC) конструкції зі швидкістю аж до 600 МГц, що робить їх ідеальним вибором для вбудованих додатків.

Розроблений корпорацією Freescale для первинного використання в системі-на-чіпі (SoC) конструкції зі швидкістю аж до 800 МГц, що робить їх ідеальним вибором для вбудованих додатків.

PowerPC e300

E300 є Суперскалярна RISC ядро з 16/16 або 32/32 Кб L1 дані / інструкції кеші, 4 етап трубопроводу з вантажем / магазину, системний реєстр, пророкування розгалужень і цілий підрозділ з можливістю подвійної точності FPU. E300 ядро не сумісна з останньою Power ISA, але дотримується раніше специфікації PowerPC і є повністю назад сумісний з G2 і PowerPC 603e ядра, з якого вона витікає.E300 основних є частиною процесора декількох процесорів SoC від Freescale:MPC83xx PowerQUICC II Pro сім'ї телекомунікаційних та мережевих процесорів.MPC51xx і MPC52xx сім'ї автомобільних і промислових процесорів управління.

PowerPC e500

PowerPC E500 є 32-розрядної архітектури Power основі мікропроцесора ядро з Freescale Semiconductor. Ядро сумісно з дорослими PowerPC специфікації книга E, а також поточні Power ISA v.2.03. Вона має подвійне питання, 7-етапного конвеєра з КПС, 32/32 KiB даних і команд L1 кешу і 256, 512 або 1024 Кб L2 кеш МГц. Витримки в діапазоні від 533 МГц до 1,5 ГГц, ядро призначено для настройки та задоволення конкретних потреб вбудованих додатків з функціями, як багатоядерні роботи та інтерфейс для застосування допоміжних технологічних установок (ЗСУ).

E500 повноваження високопродуктивних PowerQUICC III системи на чіпі (SoC) мережевих процесорів, і всі вони мають загальну схему іменування, MPC85xx. Freescale нового QorIQ це еволюційний крок від PowerQUICC III, а також буде заснована на E500 ядер.

PowerPC e600

PowerPC E600 сімейство 32-розрядних ядер Power Architecture мікропроцесор, розроблений корпорацією Freescale для первинного використання у високій продуктивності системи-на-чіпі (SoC) конструкції зі швидкістю в діапазоні понад 2 ГГц, що робить їх ідеальними для високої продуктивності маршрутизації і телекомунікаційних систем. E600 є продовженням вельми успішної дизайн PowerPC G4, PowerPC ака 7400.

E600 є Суперскалярна поза порядком RISC ядро з 32/32 Кб L1 дані / інструкції кеші, 7 етап, 3-питання трубопроводу з вантажем / магазину, системний реєстр, потужний пророкування розгалужень, цілий підрозділ, подвійної точності FPU і розширення 128-бітний блок AltiVec з обмеженими позачергового виконання замовлень. Ядро призначений для роботи в багатопроцесорних і багатьох основних конструкцій і може приймати великі обсяги кеш L2 на смерть.

E600 ядро не сумісні з новою специфікацією Power ISA, але дотримується раніше специфікації PowerPC і є повністю назад сумісний з PowerPC G4 ядра, з якого вона витікає.

Основні характеристики MPC8640D:

Швидкість процесора - 1 ГГц /1.25

Типові потужність - 14 Вт /21

MPX Автобус (комплексний) - до 500 МГц

Кеш L1 (інтегрований) - 32 KB інструкцію, 32 KB на ядро даних з контролем парності захисту

Кеш L2 (інтегрований) - 1 MB на кожне ядро з можливістю ECC

Компанія Freescale приступила до відвантажень дослідних зразків нової, двоядерний системи-на-чіпі (SoC) MPC8640D, яка містить два PowerPC-ядра e600, що працюють на частоті 1,0 - 1,25 ГГц. Як повідомляється, представлена мікросхема є версією раніше представленої одноядерний моделі MPC8641D, вже знайшла досить широке застосування, і повністю сумісна з нею і по контактах, і програмно. Однак, на відміну від попередниці, для новинки заявлено на 27% менше енергоспоживання та знижена на 37% ціна, що має привернути до неї увагу розробників, як нових, так і вже освоїли дану платформу.

Зниження енергоспоживання і ціни, згідно з поясненнями Freescale, вдалося досягти, перш за все, за рахунок зниження робочої частоти ядер і системної шини. Якщо для MPC8641D максимальна робоча частота - 1,5 ГГц, а шина тактіруется на 667 МГц, то максимум для MPC8640D - 1,25 ГГц, з частотою шини 500 МГц. В іншому ж набір функціональних блоків цих чіпів однаковий, і включає 32 Кб кеша L1, 1Мб кеша L2 на ядро, блок векторних обчислень AltiVec 128-біт, компоненти північного мосту, в тому числі контролери DDR1/DDR2, шину до систем зберігання, набір швидкісних інтерфейсів - послідовний RapidIO, Ethernet і PCI Express. За даними виробника, типовий рівень споживаної потужності MPC8640D - 14-21 Вт, а допустимий діапазон температур - від 0 до 105 градусів Цельсія.

Чіп MPC8640D, також як і його одноядерних версія, MPC8640, позиціонується для застосування в мережевій і телекомунікаційному обладнанні, системах розподілених обчислень, в аерокосмічних і оборонних програмах. Ціна мікросхем у великих партіях - 120 і 90 дол, відповідно, початок поставок заплановано на другу половину 2008 р.

Характеристика живлення:

1. Ці значення визначають витрату енергії в номінальнії напрузі і застосовуються до всіх допустимих частотами шини процесора і

2. конфігурації. Значення не включають розсіювання живлення для операцій введення-виведення.

2. Типове живлення - середнє значення, виміряний у рекомендованому базовій напрузі номіналу (VDD_Coren) та 65 ° C стик температура , виконуючи Dhrystone 2.1 порівняльного тесту і досягаючи 2.3 МІЛЬЙОНІВ операцій за секунду / МГЦ Dhrystone з одним ядром у 100%-ої ефективності і другим ядром у 65%-ої ефективності.

3. Теплове живлення - середнє живлення, виміряне у номінальній базовій напрузі (VDD_Coren) і максимальний операційний стик температура, виконуючи Dhrystone 2.1 порівняльних тесту і досягаючи 2.3 МІЛЬЙОНІВ операцій за секунду / МГЦ Dhrystone на обох ядрах і типовою робочого навантаження в інтерфейсах платформи.

4. Максимальна потужність - максимальна потужність, виміряна в номінальній базовій напрузі (VDD_Coren) і максимальний операційний стик температура (див. Table2), виконуючи тест, який включає повністю L1-cache-resident, винайдена послідовність інструкцій, які зберігають всі модулі виконання максимально зайнятими на обох ядрах.

5. Ці числа живлення тільки для моделей MC8640Dwxx1067Nz і MC8640wxx1067Nz. VDD_Coren = 0.95 V і

1.2 Архітектура мікропроцесора MPC8640D

Блок цього процесора включає в себе 2 ядра процесора та 1Мб кеш-пам'яті другого рівня (L2) (чотири блоки по 32Кб Cache SRAM). Високошвидкісна шина кеш-пам'яті повністю ізольована та працює на тій же ж частоті, що і ядро процесора. Сигнали, які передаються системною шиною використовують розширену версію низьковольтної AGTL+ (Advanced Gunning Transceiver Logic) сигнальної технології. Для найбільш швидкої роботи системна шина підтримує синхронну передачу даних. Сигнали системної шини вимагають зовнішнього переривання в кінці кожного кроку для того, щоб допомогти забезпечити високий рівень сигналу. Максимальна пропускна здатність системної шини даних - 1.1Гб/сек.

Абстрактний рівень процесора.

Процесор MPC8640D функціонально потребує прошивку Абстрактного Рівня Процесора (Processor Abstraction Layer - PAL). Прошивка PAL знаходиться у системній флеш-пам'яті та є частиною архітектури Intel Itanium. Процесор використовує концепцію EPIC (Explicitly Parallel Instruction Computing - явна паралельна обробка інструкцій) для тіснішого зв'язку між апаратним та програмним рівнем. За цією концепцією, розроблений інтерфейс зв'язку між процесором та програмним забезпеченням, щоб це саме програмне забезпечення могло експлуатувати всю доступну під час компіляції інформацію та ефективно доставляти її до процесора. У ній розглядаються кілька основних вузьких місць у продуктивності сучасних комп'ютерів, таких як латентність пам'яті, значення адреси пам'яті та залежностей управління потоком.

Процесор MPC8640D має шість 10-ступеневих конвеєри та працює на частоті 1200 MHz . На тактах 1-3 відбувається заповнення конвеєра (пролог), такти 4-5 ставляться до фази ядра, такти 6-8 відповідають епілогу. Якби не було взаємозалежності, команди ld8, add і st8 могли б працювати паралельно у фазі ядра (передбачається, що є два порти пам'яті). Скажемо, коли add починає роботу, ld8 могла б почати нове завантаження, але вже в інший GR-Регістр. У суперскалярних RISC-Процесорах для досягнення подібних цілей доводиться створювати окремі коди для прологу й епілогу, розкручувати цикли, що приводить до збільшення довжини коду. Висока частота системної шини зменшує затримки інструкцій. Для обробки даних процесор використовує: 4 блоки для обробки цілих чисел, 4 блоки для обробки мультимедіа, 2 блоки завантаження \ збереження, 3 блоки розгалуження, 2 блоки розширеної та 2 звичайної точності для обробки чисел з плаваючою крапкою. Дані процесори можуть бути ефективно використані для побудови як невеликих чотирьохпроцесорних так і величезних систем. Збалансоване ядро та підсистема пам'яті забезпечують високу продуктивність роботи з будь-якими завданнями.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.