Рефераты. Информатика и программное обеспечение ПЭВМ

Предметный тип организации технологии предполагает создание параллельно действующих технологических линий, специализирующихся на обработке информации и решении конкретных комплексов задач (учет нагрузки, качества прохождения сигнала и т. п.) и организующих пооперационную обработку данных внутри линии.

Пооперационный (поточный) тип построения технологического процесса предусматривает последовательное преобразование обрабатываемой информации согласно технологии, представленной в виде непрерывной последовательности сменяющих друг друга операций, выполняемых в автоматическом режиме.

Различают следующие режимы взаимодействия пользователя с ЭВМ: пакетный и интерактивный (запросный, диалоговый). Сами ЭВМ могут функционировать в следующих режимах: одно- и многопрограммном, разделения времени, реального времени, телеобработки.

Организация вычислительного процесса при пакетном режиме строилась без доступа пользователя к ЭВМ. Его функции ограничивались подготовкой исходных данных по комплексу информационно-взаимосвязанных задач и передачей их в центр обработки, где формировался пакет, включающий задание для ЭВМ на обработку, программы, исходные и справочные данные. Он вводился в ЭВМ и реализовывался в автоматическом режиме, при этом работа ЭВМ могла проходить в одно- или многопрограммном режиме.

Интерактивный режим предусматривает непосредственное взаимодействие пользователя с информационно-вычислительной системой, может носить характер запроса (как правило регламентированного) или диалога с ЭВМ.

Запросный режим необходим пользователям для взаимодействия с системой через значительное число абонентских терминальных устройств, в том числе удаленных на значительное расстояние от центра обработки. Такая необходимость обусловлена решением оперативных задач справочно-информационного характера.

Диалоговый режим открывает пользователю возможность непосредственно взаимодействовать с вычислительной системой в допустимом для него темпе работы, реализуя повторяющийся цикл выдачи задания, получения и анализа ответа. При этом ЭВМ сама может инициировать диалог, сообщая пользователю последовательность шагов (представление меню) для получения искомого результата.

Обе разновидности интерактивного режима (запросный, диалоговый) основываются на работе ЭВМ в режимах реального времени и телеобработки, которые являются дальнейшим развитием режима разделения времени, поэтому обязательными условиями функционирования системы в этих режимах являются, во-первых, постоянное хранение в запоминающих устройствах ЭВМ необходимой информации и программ и лишь в минимальном объеме поступление исходной информации от абонентов и, во-вторых, наличие у абонентов соответствующих средств связи с ЭВМ для обращения к ней в любой момент времени.

Рассмотренные технологические процессы и режимы работы пользователей в системе "человек-машина" особенно четко проявляются при интегрированной обработке информации, которая характерна для современного автоматизированного решения задач в многоуровневых информационных системах.

1.6.5 Хранение информации

Хранение и накопление информации вызвано ее многократным использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки; осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Хранение информации - это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

Основное содержание процесса хранения и накопления информации состоит в создании, записи, пополнении и поддержании информационных массивов и баз данных в активном состоянии (рис. 1.16).

В результате реализации такого алгоритма документ, независимо от формы представления поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где помещается на соответствующую "полку" в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Этап хранения информации может быть представлен на следующих уровнях: внешнем, концептуальном (логическом), внутреннем, физическом.

Рис. 1.16. Алгоритм процесса подготовки информации к хранению

Внешний уровень отражает содержательность информации и представляет способы (виды) представления данных пользователю в ходе их хранения.

Концептуальный уровень определяет порядок организации информационных массивов и способы хранения информации (файлы, массивы, распределенное хранение, сосредоточенное и др.).

Внутренний уровень представляет организацию хранения информационных массивов в системе ее обработки и определяется разработчиком.

Физический уровень хранения означает реализацию хранения информации на конкретных физических носителях.

Способы организации хранения информации связаны с ее поиском - операцией, предполагающей извлечение хранимой информации.

Хранение и поиск информации являются не только операциями над ней, но и предполагают использование методов осуществления этих операций. Информация запоминается так, чтобы ее можно было отыскать для дальнейшего использования. Возможность поиска закладывается во время организации процесса запоминания. Для этого используют методы маркирования запоминаемой информации, обеспечивающие поиск и последующий доступ к ней и применяемые для работы с файлами, графическими базами данных и т. д.

Маркер (mark, marker) - метка на носителе информации, обозначающая начало или конец данных либо их части (блока).

В современных носителях информации используются маркеры:

- адреса (адресный маркер) - код или физическая метка на дорожке диска, указывающие на начало адреса сектора;

- группы - маркер, указывающий начало или конец группы данных;

- дорожки (начала оборота) - отверстия на нижнем диске пакета магнитных дисков, указывающие физическое начало каждой дорожки пакета.

- конца файла - метка, используемая для указания окончания считывания последней записи файла;

- ленты (ленточный маркер) - управляющая запись или физическая метка на магнитной ленте, обозначающая признак начала или конца блока данных или файла;

- сегмента - специальная метка, записываемая на магнитной ленте для отделения одного сегмента набора данных от другого.

Хранение информации в ЭВМ связано с процессом ее арифметической обработки и с принципами организации информационных массивов, поиска, обновления, представления информации и др.

Важным этапом автоматизированного этапа хранения является организация информационных массивов.

Массив (от англ. array) - упорядоченное множество данных.

Информационный массив - система хранения информации, включающая представление данных и связей между ними, т. е. принципы их организации.

С учетом этого рассматриваются следующие структуры организации информационных массивов: линейная, многомерная.

В свою очередь, линейная структура данных делится на строки, одномерные массивы, стеки, очереди, деки и др.

Строка - это представление данных в виде элементов, располагающихся по признаку непосредственного следования, т. е. по мере поступления данных в ЭВМ.

Одномерный массив - это представление данных, отдельные элементы которых имеют индексы, т. е. поставленные им в соответствие целые числа, рассматриваемые как номер элемента массива.

Индекс обеспечивает поиск и идентификацию элементов, а следовательно, и доступ к заданному элементу, что облегчает его поиск по сравнению с поиском в строке.

Идентификация - процесс отождествления объекта с одним из известных объектов.

Стек - структура данных, учитывающая динамику процесса ввода-вывода информации, использующая линейный принцип организации хранения, реализующий процедуру обслуживания "последним пришел - первым ушел" (первым удаляется последний поступивший элемент).

Очередь - структура организации данных, при которой для обработки информации выбирается элемент, поступивший ранее всех других.

Дека - структура организации данных, одновременно сочетающая рассмотренные виды.

Нелинейные структуры хранения данных используют многомерные структуры (массивы) следующих видов: деревья, графы, сети.

Элемент многомерного массива определяется индексом, состоящим из набора чисел. Формой представления прямоугольного массива является матрица, каждое значение которой определяется индексом требуемого элемента массива. Так, в двухмерном массиве элементы обозначаются двумя индексами, а в трехмерном - тремя.

Массивы по своей структуре близки к файлам и отличаются от последних двумя основными признаками:

- каждый элемент массива может быть явно обозначен, и к нему имеется прямой доступ;

- число элементов массива определяется при его описании.

Организация хранения данных в многомерном массиве может быть представлена в виде логических структур информационных массивов. В этих массивах структуры данных компонуются в виде записей, располагающихся различным образом. С учетом этого выделяют следующие основные структуры информационных массивов: последовательную, цепную, ветвящуюся, списковую.

В последовательной структуре информационного массива записи располагаются последовательно, нахождение требуемой записи осуществляется путем просмотра всех предшествующих. Включение новой записи в информационный массив требует смещения всех записей, начиная с той, которая добавляется. Обновление информационных массивов при последовательной структуре требует перезаписи всего массива.

В цепной структуре информационные массивы располагаются произвольно. Для логической связи отдельных записей необходима их адресация, т. е. каждая предыдущая запись логически связанного информационного массива должна содержать адрес расположения последующей записи. Если с определенного уровня, значения в записях повторяются в различных сочетаниях, то в целях экономии памяти возможен переход от цепной структуры к ветвящейся.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.