Рефераты. Драйвер клавиатуры, реализующий функции музыкального синтезатора на клавиатуре для Windows NT 5

Драйвер имеет следующие точки входа:

DriverEntry

DriverUnload

AddDevice

Функции для обработки пакетов IRP

ISR

2.3.1 Функции загрузки/выгрузки драйвера

WDM-драйверы отличаются от унаследованных драйверов тем, что должны содержать дополнительные точки входа для поддержки PnP. Приведем список точек входа и кратко охарактеризуем их назначение.

NTSTATUS DriverEntry(

IN PDRIVER_OBJECT DriverObject, // указатель на объект драйвера

IN PUNICODE_STRING RegistryPath) // путь к подразделу регистра,

// относящегося к драйверу

Эта функция выполняется при загрузке драйвера операционной системой. В WDM-драйверах на DriverEntry возложены обязанности по регистрации всех остальных точек входа драйвера.

NTSTATUS AddDevice(

IN PDRIVER_OBJECT DriverObject, // указатель на объект драйвера

IN PDEVICE_OBJECT PhysicalDeviceObject) // указатель на родительский PDO

В поддерживающих PnP драйверах через эту точку входа менеджер PnP посылает драйверу уведомление об обнаружении устройства, за которое должен отвечать драйвер. Функция AddDevice должна создать объект устройства с помощью вызова IoCreateDevice и при необходимости присоединить его к стеку устройств вызовом IoAttachDeviceToDeviceStack.

NTSTATUS DriverUnload(

IN PDRIVER_OBJECT DriverObject) // указатель на объект драйвера

Вызывается при выгрузке драйвера. В этой функции должны осво-бождаться все затребованные драйвером ресурсы. Драйверы WDM-модели выполняют эти действия в обработчике запросов IRP_MJ_PNP с субкодом IRP_MN_REMOVE_DEVICE, то есть при удалении устройства из системы.

2.3.2 Функции обработки запросов/прерываний

Следует выделить отдельный класс точек входа драйвера, которые предназначены для обработки IRP-пакетов с различными кодами операций. Эти точки входа регистрируются при загрузке драйвера в функции DriverEntry. Регистрация производится путем заполнения элементов массива MajorFunction адресами диспетчеризуемых функций. Индексом в этом массиве являются коды IRP_MJ_XXX, то есть описанные числами типы пакетов IRP. Диспетчер ввода/вывода, ориентируясь на заполнение этого массива, вызывает нужные функции драйвера.

Поскольку для драйвера важны только адреса рабочих процедур, то все рабочие процедуры могут иметь совершенно произвольные имена.

Стандартный прототип таких функций обработки:

NTSTATUS IRPControl(

IN PDEVICE_OBJECT DeviceObject, // указатель на объект устройства

IN PIRP Irp) // указатель на пакет IRP

Функции обработки пакетов IRP

Функции, адреса которых записаны в массиве MajorFunctions, вызываются диспетчером ввода/вывода для обработки соответствующих запросов от клиентского драйвера (пользовательских приложений или модулей уровня ядра). Эти запросы оформляются в виде специальных структур - IRP пакетов.

При любом запросе Диспетчер формирует IRP. Память для структуры IRP выделяется в нестраничной памяти. В IRP записывается код операции ввода вывода. Пакет IRP состоит из заголовка (рис. 2.3), который имеет постоянный размер и стека IRP (рис. 2.4). Стек имеет переменную длину.

Заголовок IRP пакета:

Поле IoStatus типа IO_STATUS_BLOCK содержит два подполя

Status - значение, которое устанавливает драйвер после обработки пакета.

В Information - чаще всего число переданных или полученных байт.

Поле AssociatedIrp.SystemBuffer типа void* содержит указатель на системный буфер для случая если устройство поддерживает буферизованный ввод/вывод.

Поле MdlAddress типа PMDL содержит указатель на MDL список, если устройство поддерживает прямой ввод вывод.

Поле UserBuffer типа void* содержит адрес пользовательского буфера для ввода/вывода.

Поле Cancel типа BOOLEAN - это индикатор того, что пакет IRP должен быть аннулирован.

Рис. 2.3. Заголовок IRP-пакета

Стек IRP пакета

Основное значение ячеек стека IRP пакета состоит в том, чтобы хранить функциональный код и параметры запроса на ввод/вывод. Для запроса, который адресован драйверу самого нижнего уровня, соответствующий IRP пакет имеет только одну ячейку стека. Для запроса, который послан драйверу верхнего уровня, Диспетчер ввода/вывода создает пакет IRP с несколькими стековыми ячейками - по одной для каждого FDO.

Каждая ячейка стека IRP содержит:

MajorFunction типа UCHAR - это код, описывающий назначение операции

MinorFunction типа UCHAR - это код, описывающий суб-код операции

DeviceObject типа PDEVICE_OBJECT - это указатель на объект устройства, которому был адресован данный запрос IRP

FileObject типа PFILE_OBJECT - файловый объект для данного запроса

Диспетчер ввода/вывода использует поле MajorFunction для того, чтобы извлечь из массива MajorFunction нужную для обработки запроса процедуру.

Рис. 2.4 Стек IRP-пакета

Функция обработки пакетов IRP_MJ_DEVICE_CONTROL

Эта функция позволяет обрабатывать расширенные запросы от клиентов пользовательского режима. Такой запрос может быть сформирован посредством вызова функции DeviceIoControl. Каждый IOCTL запрос имеет свой код. Этот код передается как параметр функции DeviceIoControl. Код IOCTL - это 32-битное число.

Запросы IOCTL служат чаще всего для обмена данными между драйвером и приложением. Для передачи данных в Windows предусмотрены 4 способа:

METHOD_BUFFERED

Входной пользовательский буфер копируется в системный, а по окончании обработки системный копируется в в выходной пользовательский буфер.

METHOD_IN_DIRECT и METHOD_OUT_DIRECT

Необходимые страницы пользовательского буфера загружаются с диска в оперативную память и блокируются. Используются MDL-списки для доступа к буферу пользователя.

METHOD_NEITHER

При данном методе передачи не производится проверка доступности памяти, не выделяются промежуточные буфера и не создаются MDL. В пакете IRP передаются виртуальные адреса буферов в пространстве памяти инициатора запроса ввода/вывода.

Функция обработки пакетов IRP_MJ_READ

Данная функция должна обрабатывать запросы на чтение информации из устройства.

Функция обработки пакетов IRP_MJ_PNP

Данная функция должна обрабатывать запросы от менеджера PnP.

Функция обработки пакетов IRP_MJ_POWER

Данная функция должна обрабатывать запросы от менеджера питания.

ISR

Данная точка входа вызовется когда произойдет прерывание, на которое зарегистрирована эта ISR функция. Вызов может произойти в любом контексте: как ядра, так и пользовательского процесса. Здесь драйвер может либо дожидаться следующего прерывания либо запросить отложенный вызов процедуры DPC (Deferred Procedure Call).

2.4 Приоритеты выполнения программного кода

Прерывание требует обработки, поэтому выполнение текущего кода прекращается и управление передается обработчику прерывания. Существуют как аппаратные, так и программные прерывания. Прерывания обслуживаются в соответствии с их приоритетом. Windows NT 5 использует схему приоритетов прерываний, известную под названием «уровни запросов прерываний» (interrupt request levels, IRQL). Всего существует 32 уровня, с 0 (passive), имеющего самый низкий приоритет, по 31 (high), имеющего соответственно самый высокий. Причем, прерывания с IRQL=0 (PASSIVE_LEVEL, уровень нормального исполнения потоков) по IRQL=2 (DISPATCH_LEVEL, планирование потоков и выполнение отложенных процедур) являются программными, а прерывания с IRQL=3 (device 1) по IRQL=31 (HIGH_LEVEL, проверка компьютера и шинные ошибки) являются аппаратными. В любой конкретный момент времени каждая инструкция выполняется на одном определенном уровне IRQL. Прерывание с уровнем IRQL=0, строго говоря, прерыванием не является, так как оно не может прервать работу никакого кода (для этого этот код должен выполняться на еще более низком уровне прерывания, а такого уровня нет).

Потоки, работающие на уровне PASSIVE_LEVEL, попадают под управление планировщика заданий (scheduler). Приоритеты, которые различает планировщик заданий для потоков с уровнем PASSIVE_LEVEL, принимают значения от 0 до 31 (MAXIMUM_PRIORITY) и называются приоритетами планирования. Различают Real-Time и Normal приоритеты планирования. Первые продолжают свою работу до тех пор, пока не появится поток с большим приоритетом, так что потоки низких приоритетов должны дожидаться, пока текущий поток Real-Time не завершит работу естественным путем. Потоки с приоритетами Normal планируются по другим правилам. Для работы им выделяется определенный квант процессорного времени, после чего управление передается другим потокам такого же приоритета. Время от времени планировщик может повышать приоритет отложенного потока в пределах диапазона Normal, в результате чего все программные потоки среди потоков этой группы, даже имеющие самые низкие приоритеты, рано или поздно получают управление.

2.5 Стек клавиатуры

Физическую связь клавиатуры с шиной осуществляет микроконтроллер клавиатуры Intel 8042. На современных компьютерах он интегрирован в чипсет материнской платы. Этот контроллер может работать в двух режимах: AT-совместимом и PS/2-совместимом. Почти все клавиатуры уже давно являются PS/2-совместимыми. В PS/2-совместимом режиме микроконтроллер клавиатуры также связывает с шиной и PS/2-совместимую мышь. Данным микроконтроллером управляет функциональный драйвер i8042prt. Драйвер i8042prt создает два безымянных объекта «устройство» и подключает один к стеку клавиатуры, а другой к стеку мыши. Поверх драйвера i8042prt, точнее, поверх его устройств, располагаются именованные объекты «устройство» драйверов Kbdclass и Mouclass. Драйверы Kbdclass и Mouclass являются так называемыми драйверами класса и реализуют общую функциональность для всех типов клавиатур и мышей, т.е. для всего класса этих устройств. Оба эти драйвера устанавливаются как высокоуровневые драйверы.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.