Рефераты. Динамическое распределение памяти

main() {

float *ptrf;

if((ptrf =(float *) malloc(1000 * sizeof(float)) == NULL)

printf("\nОшибка при выделении памяти!");

}

Освобождение памяти

void free(void *block);

Освобождает блок ДП, начинающийся с адреса block. Этот адрес должен находится в заголовке ранее выделенного блока (см. п.3). В противном случае, будет освобожден случайный блок и возникнет логическая ошибка. Динамические переменные не освобождаются автоматически при выходе из области действия и, таким образом, засоряют кучу.

Перевыделение памяти

void *realloc(void *block, size_t size);

Изменяет размер блока, на который указывает block. Новый размер блока будет равен size. Старая информация сохраняется. При нехватке свободных байт блок будет перемещен в новое место с одновременным копированием информации. Функция возвращает адрес нового блока, не изменяя переменную block.

Пример 2. Выделение памяти под двумерный массив

main() {

float **A;

int n=5, n=10;

A = (float **)malloc(m * sizeof(float *));

if(A == NULL)

{

printf("\nОшибка при выделении памяти под массив указателей!");

exit(1);

}

for (int i=0; i< m; i++)

{

A[i] = (float *)malloc(n * sizeof(float));

if(A[i] == NULL)

{

printf("\nОшибка памяти под%d-ую строку!", i);

for(int j=0; j< i; j++)

free(A[j]);

free(A);

exit(2);

}

//…….

for(i=0; i< m; i++)

free(A[i]);

free(A);

}

3. Менеджер ДРП

Управлением ДП занимается специальный фрагмент кода, вызываемый в функциях ДРП. Он называется менеджером ДП. Мы исследуем работу менеджера в модели памяти large. В других моделях менеджер устроен по-другому.

Первоначально менеджер рассматривает кучу как свободную область. При каждом обращении к памяти выделяется непрерывный блок, состоящий из одного или нескольких параграфов. В первом параграфе имеется заголовок блока. При освобождении памяти блок помечается как свободный. Таким образом, в процессе работы программы свободные и занятые блоки начинают чередоваться. В результате увеличивается фрагментация кучи, когда общей свободной памяти много, а непрерывного блока необходимой длины нет.

Выделяемый блок памяти имеет вид

2

2

14

16

…..

16

В заголовке находятся:

длина блока в параграфах (2 байта),

сегментный адрес предыдущего блока (2 байта),

далее идут данные. Адрес начала данных и возвращается функциями ДРП.

Блоки организованы в односвязный список. При запуске программы в начале куче выделяется блок для системных нужд. Первый выделенный программой блок будет ссылаться на имеющийся блок и т.д. При освобождении блока в его заголовке обнуляется ссылка на предыдущий блок. Длина блока не изменяется, а в информационную область заносятся данные, используемые при корректировке кучи.

Таким образом, зная адрес последнего занятого блока, можно определить длину, адрес и статус остальных блоков. Рассмотрим программу

main(){

char *block1=(char *)malloc(100);

char *block2=(char *)malloc(110);

char *block3=(char *)malloc(120);

free(block2);

}

Выполняя ее в отладчике, увидим, что до освобождения второго блока куча будет иметь вид (конкретные адреса будут другими!)

0х0007

0х90EF

0x0008

0x910F

….

0x0008

0x9116

Block1

Block2

Block3

Рис. 2

После выполнения оператора free(block2) куча будет иметь вид

0х0007

0х90EF

0x0008

0x0000

….

0x0008

0x9116

Block1

Block2

Block3

Рис. 3

Замечание 1. Особенность динамических символьных строк.

Рассмотрим фрагмент кода, создающий динамическую строку.

main()

{

char *str; // ячейка str находится в стеке

str = (char *)malloc(13);

strcpy(str, "Hello,World!");

// строка Hello,World! помещается в кучу

}

Строка "Hello,World!" реально состоит из 13 символов, так как кроме самих символов содержит 0 - признак конца строки. Поэтому, если выделить только 12 элементов

Str = (char *)malloc(12),

то признак конца строки "залезет" на заголовок следующего блока ДП и изменит длину этого блока. Если бы длина строки была меньше 12 байт, то фраза уместилась бы в первом параграфе, и ошибки бы не произошло. Источник хорошо скрытой логической ошибки!

4. Дополнительные фунции ДРП

Определение размера свободной области кучи

unsigned long coreleft(void);

Возвращает размер неиспользованной памяти в байтах, расположенной за последним занятым блоком. "Дырки" в куче не учитываются.

Блочное выделение памяти

void *calloc(size_t NItems, size_t SizeOfItem);

Выделяет и обнуляет память для Nitems фрагментов по SizeOfItem байт каждый. Размер фрагмента не превосходит 64K, но общий объем памяти может превышать 64K. В случае неудачи возвращается NULL.

Проверка целостности кучи

int heapcheck(void);

Просматривает кучу и проверяет для каждого блока указатели, размер и другую критическую информацию. Если все нормально, то возвращаемое значение больше 0. В противном случае, возвращается отрицательное число.

Просмотр блоков кучи

int heapwalk(struct heapinfo *hi);

Просматривает кучу блок за блоком. Предполагается, что сбоев в куче нет, для этого используйте heapcheck. Фнукция получает указатель на структуру heapinfo. При первом вызове, установите hi.ptr в 0. Функция устанавливает этот указатель на адрес очередного блока. Другие поля структуры size, in_use позволяют определить размер блока в байтах и его занятость. Для очередного блока функция вернет _HEAPOK, для последнего блока _HEAPEND.

Пример 3. Занятые и свободные блоки.

#include <stdio.h>

#include <alloc.h>

#define NUM_PTRS 4

#define NUM_BYTES 20

int main(void)

{

struct heapinfo hi;

char *array[ NUM_PTRS ];

for(int i = 0; i < NUM_PTRS; i++)

array[ i ] = (char *)malloc(NUM_BYTES);

for(i = 0; i < NUM_PTRS; i += 2)

free(array[ i ]);

hi.ptr = NULL;

printf(" Размер Статус\n");

printf(" ---- ------\n");

while(heapwalk(&hi) == _HEAPOK)

{

printf("%7u ", hi.size);

printf("%s\n",(hi.in_use?"используется": "свободен"));

}

return 0;

}

В результате будет напечатано

Размер

Статус

528

Используется

32

Свободен

32

Используется

32

Свободен

32

Используется

Инициализация свободных блоков кучи

int heapfillfree(unsigned int fillvalue);

Заполняет байты свободных блоков кучи константным значением fillvalue.

Проверка свободных блоков кучи

int heapcheckfree(unsigned int fillvalue);

Проверяет байты свободных блоков кучи на их равенство константному значению fillvalue.

Функции группы far.

В моделях памяти, где куча не превышает 64K, можно использовать память вне этой области - дальнюю кучу. Для работы с дальней кучей имеются свои версии функций, c префиксом far.

5. Лабораторные задания

Области памяти

Для следующей программы укажите значения сегментных регистров. Укажите абсолютные адреса и размеры в байтах области кода; области данных, глобальных и статических переменных; стека; кучи. Модель памяти large. Определите в отладчике адреса и размещение по областям переменных: main; Privet; Dlit в функции main; i и Dlit в функции Privet; printf.

void Privet(int sound); // прототип функции Privet

main(){

int Dlit = 5;

Privet(Dlit); //вызов функции Privet

}

void Privet(int Dlit) { // заголовок функции Privet

{

printf("Привет!\n");

printf("С добрым утром!");

for(int i = 0; i<Dlit; i++) //печатает первые Dlit

printf("%c", i); // символов ascii-таблицы

}

Исследование менеджера ДРП

Выделите динамическую память для трех данных типа char. Адреса сохраните в переменных char *x, *y, *z. Определите в отладчике адреса *x, *y, *z. Убедитесь, что для кажго из однобайтовых данных будет отведено в куче 16 байт,т.е. целый параграф.

Односвязный список менеджера

Разместите в куче несколько данных разного типа, найдите их адреса, размер блоков. Убедитесь в наличии односвязного списка.

Новый менеджер

Язык Си не пускает дефрагментации ДП. Напишите свой менеджер, содержащий функции mymalloc, myfree, mydefrag.

Сумма свободных блоков

Определите суммарный объем "дырок" в куче, образовавшихся после освобождения блоков.

Выделение памяти под одномерный массив

Выделите память под 20 переменных типа int. Заполните их случайными целыми числами из интервала от -3 7. Выведите их на экран.

Выделение памяти под двумерный массив

Выделите память под двумерный массив 3х5 типа float. Заполните их случайными вещественными числами из интервала от -3.6 7.4 с шагом 0.1. Выведите их на экран в виде таблицы. Массив представьте в виде строки.

Структура для матрицы переменных размерностей.

Создайте структуру для хранения информации о матрице переменных размерностей. Рассмотрите две возможности

Struct Matr1{ int m, n; int *ptr;};

Struct Matr2{ int m, n; int **ptr;};

Напишите функции

int DinMatr1(Matr1 *matr);

int DinMatr2(Matr2 *matr);

для корректного выделения памяти под массив

Умножение матриц

Напишите функцию умножения матриц переменных размерностей.

Ввод чисел

С клавиатуры вводятся натуральные числа. Признак конца ввода - число 0. Сохраняйте числа в куче. По окончании ввода выдайте числа на экран.

Список строк

Создайте односвязный список для хранения текстовых строк, вводимых с клавиатуры. Выведите их на экран в обратном порядке.

Норма матрицы

Октаэдрической нормой квадратной матрицы А, nxn, называется число A? = max{a1j+a2j+ …+anj: j=1,…n}. Напишите функцию для вычисления нормы матрицы. Размеры матрицы произвольный.

Наибольшая по размеру квадратная матрица.

Найдите наибольший размер N, для которого в куче можно выделить в памяти место для квадратной матрицы NxN чисел типа float. Получите результат при запуске программы из командной строки DOS и из оболочки BC.

Модификация функции coreleft.

Напишите функцию вычисления общего размера свободной кучи.

Свободна ли куча?

Напишите функцию определяющую, свободна ли куча.

Работа с файлом.

Запишите динамическую матрицу в файл, прочитайте из файла и распечатайте.

Библиографический список

1. Керниган Б, Ритчи Д. Язык программирования Си. М.: Фин. и стат., 1992.

2. Керниган Б, Ритчи Д. Язык программирования Си. Задачи по курсу Си. М.: Фин.и стат., 1985.

3. Уинер Р. Язык ТурбоСи. М.:Мир, 1991.

4. Хинт К. Си без проблем. Руководство пользователя. М.: Бином, 1997.

Трофимов С.П. Программирование в Си. Организация ввод-вывода // Метод. указания, Екатеринбург, Изд-во УГТУ, 1998, 20 с.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.