Рефераты. Динамическое программирование, алгоритмы на графах

При программировании вершины графа обычно сопоставляют числам от 1 до N, где - количество вершин графа, и рассматривают . Ребра нумерую числами от 1 до M, где . Для хранения графа в программе можно применить различные методы. Самым простым является хранение матрицы смежности, т.е. двумерного массива, скажем A, где для невзвешенного графа (или 1), если и (или 0) в противном случае. Для взвешенного графа A[i][j] равно весу соответствующего ребра, а отсутствие ребра в ряде задач удобно обозначать бесконечностью. Для неориентированных графов матрица смежности всегда симметрична относительно главной диагонали (i = j). C помощью матрицы смежности легко проверить, существует ли в графе ребро, соединяющее вершину i с вершиной j. Основной же ее недостаток заключается в том, что матрица смежности требует, чтобы объем памяти памяти был достаточен для хранения N2 значений, даже если ребер в графе существенно меньше, чем N2. Это не позволяет построить алгоритм со временем порядка O(N) для графов, имеющих O(N) ребер.

Этого недостатка лишены такие способы хранения графа, как одномерный массив длины N списков или множеств вершин. В таком массиве каждый элемент соответствует одной из вершин и содержит список или множество вершин, смежных ей.

Для реализации некоторых алгоритмов более удобным является описание графа путем перечисления его ребер. В этом случае хранить его можно в одномерном массиве длиной M, каждый элемент которого содержит запись о номерах начальной и конечной вершин ребра, а также его весе в случае взвешенного графа.

Наконец, при решении задач на графах, в том числе и с помощью компьютера, часто используется его графическое представление. Вершины графа изображают на плоскости в виде точек или маленьких кружков, а ребра -- в виде линий (не обязательно прямых), соединяющих соответствующие пары вершин, для неориентированного графа и стрелок - для ориентированного (если ребро направлено из u в v, то из точки, изображающей вершину u, проводят стрелку в вершину v).

Графы широко используются в различных областях науки (в том числе в истории!!!) и техники для моделирования отношений между объектами. Объекты соответствуют вершинам графа, а ребра -- отношениям между объектами). Подробнее об этой структуре данных можно прочитать в [5 - 7].

3. Поиск пути между парой вершин невзвешенного графа

Пусть мы имеем произвольный граф, ориентированный или неориентированный. Если в невзвешенном графе существует путь, то назовем длиной пути количество ребер в нем. Если пути нет вообще, то расстояние считается бесконечным. Путь минимальной длины при этом называется кратчайшим путем в графе. Легко показать, что любые части кратчайшего пути также являются кратчайшими путями между соответствующими вершинами. Ведь если это не так, то есть существует отрезок кратчайшего пути, между концами которого можно построить более короткий путь, то мы можем заменить этот отрезок кратчайшего пути между вершинами u и v на более короткий, тем самым уменьшив и длину кратчайшего пути между u и v, что невозможно. Это свойство кратчайших путей позволяет решать задачу их нахождения методом динамического программирования. Покажем сначала как можно записать “волновой алгоритм” так, что задача поиска кратчайшего пути между двумя вершинами графа будет решаться за O(N2) действий.
Задача 12. Для линий метрополитена некоторого города известно, между какими парами линий есть пересадочная станция. Необходимо определить, за сколько пересадок можно добраться с линии m на линию n или сообщить, что сделать это невозможно.
Решение. Такой метрополитен удобно описывать с помощью графа, вершины которого есть линии метрополитена (а не станции!!!), а наличие ребра между вершинами i и j графа соответствует наличию пересадочной станции между линиями с номерами i и j. Представим этот граф с помощь массива множеств (переменная ss в программе), в i-м элементе этого массива содержится множество всех линий, на которые можно попасть с линии i за одну пересадку. Результат будем получать с помощью множества s, на каждом шаге алгоритма содержащего номера всех линий, на которые можно попасть с исходной линии m за k пересадок. Заметим, что если вершина n нашего графа достижима из вершины m (говорят, что они находятся в одной компоненте связности), то искомое число пересадок меньше общего количества линий nn. Так как даже если после каждой из первых nn - 1 пересадок мы попадали на новую линию, то после следующей пересадки мы обязательно окажемся на какой-то из линий повторно, ведь их всего nn. Поэтому, если наш алгоритм не завершился за nn - 1 шаг, то граф не связан и дальнейший поиск пути бесполезен (заметим, что наличие пути между двумя конкретными вершинами не доказывает его связность, а исследовать все пары вершин с помощью предложенного алгоритма для анализа связности неэффективно).
Программа для решения задачи представлена ниже.

const nn=200;{число линий}

type myset = set of 0..nn;var i,m,n,k:byte; ss:array[1..nn] of myset; s,s1:myset;begin

…{считываем входные данные}

s:=[m]; k:=0; while not (n in s) and(k<nn-1) do begin k:=k+1;

s1:=s; s:=[]; for i:=1 to nn do if i in s1 then

{добавляем к s вершины,

достижимые из i} s:=s+ss[i] end; if n in s then writeln(k) else

writeln('it is impossible')

end.

Заметим, что предложенный при решении задачи 12 алгоритм можно модифицировать так, чтобы он находил длину кратчайшего пути от исходной вершины до всех других вершин графа, причем асимптотическое время его работы не изменится. Несмотря на хорошие временные характеристики, область применения алгоритма ограничена размером типа “множество” в Паскале. Избежать этого ограничения можно, используя такой способ представления графа как массив списков вершин, смежных с данной. О способах реализации динамических структур данных, и в частности списков, см., например, [8].

Пусть теперь требуется определить наличие пути сразу для всех пар вершин графа. Такая задача для невзвешенного графа называется транзитивным замыканием. Рассмотрим ее решение на примере следующей проблемы.

Задача 13. Пусть для некоторых пар переменных известно, что значение одной из них не больше значения другой. Выписать остальные пары из упомянутых переменных, для которых, используя транзитивность операции “”, можно также сказать, значение одной из них не превосходит значение другой.
Решение. Обозначим данными переменными вершины графа, а знание о наличии между двумя переменными отношения “” -- ориентированными ребрами. Для некоторой пары вершин справедливо, что значение одной значения другое, если в построенном ориентированном графе существует путь из первой из упомянутых вершин во вторую. Тогда для решения задачи можно воспользоваться следующим алгоритмом Уоршолла [5, 6]. Пусть A -- матрица, изначально равная матрице смежности графа, записанной с помощью логических констант true и false. На k-м шаге алгоритма значение true в элементе матрицы A[i, j] будет означать, что из вершины i в вершину j cуществует путь, который проходит через некоторые вершины с номерами, не превосходящими k - 1. Если же через упомянутые вершины пути нет (A[i, j] = false), но существует путь из вершины i в вершину k и путь из вершины k в вершину j то значение данного элемента матрицы становится true. Покажем как написать фрагмент программы, реализующий этот алгоритм без использования условных операторов:
c:=a;{запоминаем матрицу смежности}
for k:=1 to nn do
for i:=1 to nn do
for j:=1 to nn do
a[i,j]:=a[i,j] or a[i,k] and a[k,j];

Краткость говорит здесь сама за себя. В результате выполнения трех вложенных циклов (то есть мы имеем алгоритм, работающий за N3 операций), порядок которых очень важен, в матрице a мы фактически получим ответ на вопрос задачи. Распечатать его можно так:

for i:=1 to nn do

for j:=1 to nn do

if a[i,j] xor c[i,j] then writeln(i,' ',j);

Если же требуется найти длины кратчайших путей для всех пар вершин, то, если каждому ребру графа приписать вес, равный единице, решение задачи будет полностью совпадать с решением той же задачи для взвешенного графа (см. далее). Поэтому отдельно мы рассматривать его не будем.

4. Пути минимальной длины во взвешенном графе

Длиной пути между двумя вершинами во взвешенном графе называется сумма весов ребер, составляющих этот путь. В отличие от невзвешенного графа наличие ребра между двумя вершинами не гарантирует, что кратчайший путь между ними состоит из этого ребра. Зачастую суммарный вес пути, состоящего из двух, трех и более ребер может оказаться меньше веса одного ребра, поэтому даже для полного графа (то есть графа, между каждой из пар вершин которого существует ребро, а в случае ориентированного графа -- два ребра, направленных в противоположные стороны) задача поиска кратчайших путей имеет смысл. Понятие кратчайшего пути пока будем рассматривать только для графов, все ребра которых имеют неотрицательный вес.

Наиболее просто найти кратчайший путь между каждой из пар вершин можно с помощью алгоритма Флойда [5 - 7], основанного на той же идее, что и алгоритм Уоршолла. Пусть в элементе матрицы A[i, j] хранится длина кратчайший пути из вершины i в вершину j, который проходит через некоторые вершины с номерами, не превосходящими k - 1. Если же длины пути из вершины i в вершину k и пути из вершины k в вершину j то таковы, что их сумма меньше, чем значение данного элемента матрицы, то его следует переопределить. То есть в реализации алгоритма Уоршолла следует заменить операцию and на “+”, а or -- на нахождение минимума из двух величин. Для реализации алгоритма массив a первоначально следует заполнить элементами матрицы смежности, обозначая отсутствие ребра между двумя вершинами “бесконечностью” -- числом, заведомо превосходящим длину любого пути в рассматриваемом графе, но меньшим, чем максимальное значение используемого типа данных, чтобы было возможно выполнять с ним арифметические операции. В этом случае можно избежать дополнительных проверок.

Если же нам требуется найти сам кратчайший путь, а не его длину, то при каждом улучшении пути между двумя вершинами мы в соответствующем элементе вспомогательного массива (в программе -- w) будем запоминать номер той вершины, через которую кратчайший путь проходит, а затем с помощью элегантной рекурсивной процедуры будем его печатать. Идея рекурсии заключается в том, что если мы знаем, что кратчайший путь от вершины i до вершины j проходит через вершину k, то мы можем обратиться к той же самой процедуре с частями пути от i до k и от k до j. Рекурсивный спуск заканчивается, когда на кратчайшем пути между двумя вершинами не окажется промежуточных вершин.

Приведем фрагмент программы, реализующий алгоритм Флойда и печатающий кратчайшие пути между всеми парами вершин графа.

procedure way(i,j:integer);

{печатает путь между вершинами i и j}

begin

if w[i,j]=0 then write(' ',j)

{печатаем только вершину j,

чтобы избежать повторов}

else

begin

way(i,w[i,j]); way(w[i,j],j)

end

end;

begin

…{заполняем матрицу смежности}

for k:=1 to nn do

for i:=1 to nn do

for j:=1 to nn do

if a[i,k]+a[k,j]<a[i,j] then

begin

a[i,j]:=a[i,k]+a[k,j];

w[i,j]:=k

end;

for i:=1 to nn do

for j:=1 to nn do

begin

write(i);

if i<>j then way(i,j);

writeln

end

end.

Алгоритм Флойда хорош всем, кроме одного: он требует хранить матрицу смежности, а это не всегда возможно. Кроме того, для определения длины кратчайшего пути между двумя конкретными вершинами, его упростить невозможно (то есть все равно придется считать пути между всеми парами вершин). Если вес любого ребра в графе вычисляется по некоторой формуле (например, как расстояние между двумя точками на плоскости, если таковыми являются вершины нашего графа), то матрицу смежности можно не создавать вообще, а в процессе выполнения программы обращаться к функции вычисления веса ребра, соединяющего вершины i и j: a(i, j).

В этом случае для определение кратчайшего пути между вершинами s и t используют алгоритм Дейкстры [5 - 7]. Все вершины в процессе работы этого алгоритма разбиты на два множества: те, до которых кратчайший путь из вершины s уже известен (в программе они помечены значениями true одномерного булевского массива b) и все остальные. Cначала в первом множестве находится только вершина s. На каждом шаге к нему добавляется одна из вершин, текущее известное расстояние до которой минимально среди всех вершин из второго множества, обозначим ее p. Первоначально текущие расстояния (в программе они хранятся в одномерном массиве l) от s до остальных вершин равны , а расстояние до s равно 0, p также равна s. На очередном же шаге мы пытаемся улучшить длину пути до каждой из вершин второго множества, сравнивая выражения l[p]+a(p,i) и l[i]. Нужно показать, почему минимальное из значений l, рассматриваемых на текущем шаге, является длиной кратчайшего пути до соответствующей вершины, а, следовательно, этот путь содержит только вершины из первого множества. Если это не так, то есть кратчайший путь до этой вершины содержит и вершины из второго множества, то минимальной оказалась бы длина пути от s до одной из этих вершин. Значит кратчайший путь до вершины p проходит только через вершины первого множества и больше его пересчитывать не нужно.

Приведем схему программы, реализующей этот алгоритм (функцию a(i, j) и значение “бесконечности” определять не будем):

for i:=1 to nn do

begin

l[i]= ;

b[i]:=false

end;

p:=s; l[s]:=0;

b[s]:=true;

f:=true;{cтоит ли искать дальше}

while (p<>t) and f do

begin

f:=false;

for i:=1 to nn do

if not b[i] then

if l[p]+a(p,i)<l[i] then l[i]:=l[p]+a(p,i);

min:=t;{важно, что b[t]=false}

for i:=1 to n do

if (not b[i])and(l[i]<l[min]) then min:=i;

if l[min]< then

begin

p:=min; b[p]:=true; f:=true

end

end;

Несложно подсчитать, что трудоемкость алгоритма составляет O(N2), что окупает некоторые сложности в его реализации. Как и в случае применения “волнового” алгоритма в невзвешенном графе, асимптотическая оценка не изменится если нам потребуется подсчитать длину пути от s до каждой из вершин графа. Поэтому, как и в алгоритме Флойда, длины кратчайших путей между всеми парами вершин могут быть рассчитаны за O(N3) операций.

Заключение

Итак, неформально, граф можно определить как набор вершин (города, перекрестки, компьютеры, буквы, цифры кости домино, микросхемы, люди) и связей между ними: дороги между городами; улицы между перекрестками; проводные линии связи между компьютерами; слова, начинающиеся на одну букву и закачивающиеся на другую или эту же букву; проводники, соединяющие микросхемы; родственные отношения, например, Алексей - сын Петра. Двунаправленные связи, например, дороги с двусторонним движением, принято называть ребрами графа; а однонаправленные связи, например, дороги с односторонним движением, принято называть дугами графа. Граф, в котором вершины соединяются ребрами, принято называть неориентированным графом, а граф, в котором хотя бы некоторые вершины соединяются дугами, принято называть ориентированным графом.

Литература

Андреева Е., Фалина И. Системы счисления и компьютерная арифметика. М.: Лаборатория базовых знаний, 2000.

Станкевич А.С. Решение задач I Всероссийской командной олимпиады по программированию. “Информатика”, №12, 2001.

Окулов С.М. 100 задач по информатике. Киров: изд-во ВГПУ, 2000.

Андреева Е.В. Решение задач XIII Всероссийской олимпиады по информатике. “Информатика”, №19, 2001.

Ахо А.А., Хопкрофт Д.Э., Ульман Д.Д. Структуры данных и алгоритмы. М.: “Вильямс”, 2000.

Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы. Построение и анализ. М.: МЦНМО, 2000.

Липский В. Комбинаторика для программистов. М.: “Мир”, 1988.

Вирт Н. Алгоритмы и структуры данных. Санкт-Петербург: “Невский диалект”, 2001.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.