Рефераты. Базы данных и информационные технологии

Это позволяет добиться лучшей производительности, но часто приводит к избыточности данных и к значительным усложнениям в структуре базы данных, в которой оказывается огромное количество таблиц фактов

При такой структуре базы данных большинство запросов из области делового анализа объединяют центральную таблицу фактов с одной или несколькими таблицами измерений.

Пример: получить средние объемы продаж товаров каждого поставщика с разбивкой по покупателям и по месяцам.

В любом случае, если многомерная модель реализуется в виде реляционной базы данных, следует создавать длинные и "узкие" таблицы фактов и сравнительно небольшие и "широкие" таблицы измерений. Таблицы фактов содержат численные значения ячеек гиперкуба, а остальные таблицы определяют содержащий их многомерный базис измерений. Часть информации можно получать с помощью динамической агрегации данных, распределенных по незвездообразным нормализованным структурам, хотя при этом следует помнить, что включающие агрегацию запросы при высоконормализованной структуре базы данных могут выполняться довольно медленно.

Достоинства использования реляционных баз данных в системах аналитической оперативной обработки:

1. При использовании ROLAP размер хранилища не является таким критичным параметром, как в случае MOLAP.

2. Внесение изменений в структуру измерений не требует физической реорганизации базы данных, как в случае MOLAP.

3. Реляционные СУБД обеспечивают значительно более высокий уровень защиты данных и хорошие возможности разграничения прав доступа.

Главный недостаток ROLAP по сравнению с многомерными СУБД - меньшая производительность.

Примеры OLAP-серверов, использующих ROLAP-архитектуру: IBM Informix Red Brick, HighGate Project фирмы Sybase, Microsoft SQL Server 2000 Analysis Services фирмы Microsoft.

Другие модели построения хранилищ данных

Гибридные системы (Hybrid OLAP, HOLAP) разработаны с целью совмещения достоинств и минимизации недостатков, присущих предыдущим классам. К этому классу относится Media/MR компании Speedware. По утверждению разработчиков, он объединяет аналитическую гибкость и скорость ответа MOLAP с постоянным доступом к реальным данным, свойственным ROLAP.

Примеры OLAP-серверов, использующих HOLAP-архитектуру: Microsoft SQL Server 2000 Analysis Services фирмы Microsoft, SAS Institute.

Помимо перечисленных средств существует еще один класс - инструменты управляемой среды запросов (MQE), дополненные функциями OLAP или интегрированные с внешними средствами, выполняющими такие функции. Эти хорошо развитые системы осуществляют выборку данных из исходных источников (реляционные базы данных, электронные таблицы), преобразуют их и помещают в динамическую многомерную базу данных, функционирующую на клиентской станции конечного пользователя. Построенный куб данных анализируется средствами многомерного OLAP, сохраняется и сопровождается локально.

Достоинства:

· относительная простота инсталляции, администрирования и сопровождения;

· способность каждого пользователя создавать свои собственные кубы данных.

Основными представителями этого класса являются BusinessObjects одноименной компании, PowerPlay компании Cognos.

Лекция 7. Современные направления исследований и разработок

Конечно, несмотря на всю их привлекательность, классические реляционные системы управления базами данных являются ограниченными. Они идеально походят для таких традиционных приложений, как системы резервирования билетов или мест в гостиницах, а также банковских систем, но их применение в системах автоматизации проектирования, интеллектуальных системах обучения и других системах, основанных на знаниях, часто является затруднительным. Это прежде всего связано с примитивностью структур данных, лежащих в основе реляционной модели данных. Плоские нормализованные отношения универсальны и теоретически достаточны для представления данных любой предметной области. Однако в нетрадиционных приложениях в базе данных появляются сотни, если не тысячи таблиц, над которыми постоянно выполняются дорогостоящие операции соединения, необходимые для воссоздания сложных структур данных, присущих предметной области.

Другим серьезным ограничением реляционных систем являются их относительно слабые возможности по части представления семантики приложения. Самое большее, что обеспечивают реляционные СУБД,- это возможность формулирования и поддержки ограничений целостности данных. Как мы отмечали в лекции 6, после проектирования реляционной базы данных многие знания проектировщика остаются зафиксированными в лучшем случае на бумаге по причине отсутствия в системе соответствующих выразительных средств.

Осознавая эти ограничения и недостатки реляционных систем, исследователи в области баз данных выполняют многочисленные проекты, основанные на идеях, выходящих за пределы реляционной модели данных. По всей видимости, какая-либо из этих работ станет основой систем баз данных будущего. Следует заметить, что тематика современных исследований, относящихся к базам данных, исключительно широка. В завершающей части курса мы приведем только короткий обзор наиболее важных направлений.

можно отметить три направления в области СУБД следующего поколения. Чтобы не изобретать названий, будем обозначать их именами наиболее характерных СУБД.

1. Направление Postgres. Основная характеристика: максимальное следование (насколько это возможно с учетом новых требований) известным принципам организации СУБД (если не считать коренной переделки системы управления внешней памятью).

2. Направление Exodus/Genesis. Основная характеристика: создание собственно не системы, а генератора систем, наиболее полно соответствующих потребностям приложений. Решение достигается путем создания наборов модулей со стандартизованными интерфейсами, причем идея распространяется вплоть до самых базисовых слоев системы.

3. Направление Starburst. Основная характеристика: достижение расширяемости системы и ее приспосабливаемости к нуждам конкретных приложений путем использования стандартного механизма управления правилами. По сути дела, система представляет собой некоторый интерпретатор системы правил и набор модулей-действий, вызываемых в соответствии с этими правилами. Можно изменять наборы правил (существует специальный язык задания правил) или изменять действия, подставляя другие модули с тем же интерфейсом.

В целом можно сказать, что СУБД следующего поколения - это прямые наследники реляционных систем. Тем не менее, различные направления систем третьего поколения стоит рассмотреть отдельно, поскольку они обладают некоторыми разными характеристиками.

Ориентация на расширенную реляционную модель

Одним из основных положений реляционной модели данных является требование нормализации отношений: поля кортежей могут содержать лишь атомарные значения. Для традиционных приложений реляционных СУБД - банковских систем, систем резервирования и т.д. - это вовсе не ограничение, а даже преимущество, позволяющее проектировать экономные по памяти БД с предельно понятной структурой. Запросы с соединениями в таких системах сравнительно редки, для динамической поддержки целостности используются соответствующие средства SQL.

Однако с появлением эффективных реляционных СУБД их стали пытаться использовать и в менее традиционных прикладных системах - САПР, системах искусственного интеллекта и т.д. Такие системы обычно оперируют сложно структурированными объектами, для реконструкции которых из плоских таблиц реляционной БД приходится выполнять запросы, почти всегда требующие соединения отношений. В соответствии с требованиями разработчиков нетрадиционных приложений появилось направление исследований баз сложных объектов. Основной смысл этого направления состоит в том, что в руки проектировщиков даются настолько же мощные и гибкие средства структуризации данных, как те, которые были присущи иерархическим и сетевым системам базам данных.

Однако важным отличием является то, что в системах баз данных, поддерживающих сложные объекты, сохраняется четкая граница между логическим и физическим представлениями таких объектов. В частности, для любого сложного объекта (произвольной сложности) должна обеспечиваться возможность перемещения или копирования его как единого целого из одной части базы данных в другую ее часть или даже в другую базу данных. Это очень обширная область исследований, в которой затрагиваются вопросы моделей данных, структур данных, языков запросов, управления транзакциями, журнализации и т.д. Во многом эта область соприкасается с областью объектно-ориентированных БД. (И в этой области настолько же плохо обстоят дела с теоретическим обоснованием.)

Близкое, но, вообще говоря, основанное на других принципах направление представлено системами баз данных, основанных на реляционной модели, в которой не обязательно поддерживается первая нормальная форма отношений. Напомним, что требование атомарности значений, которые могут храниться в элементах кортежей отношений, является базовым требованием классической реляционной модели. Приведение исходного табличного представления предметной области к "плоскому" виду является обязательным первым шагом в процессе проектирования реляционной базы данных на основе принципов нормализации. С другой стороны, абсолютно очевидно, что такое "уплощение" таблиц хотя и является необходимым условием получения неизбыточной и "правильной" схемы реляционной базы данных, в дальнейшем потенциально вызывает выполнение многочисленных соединений, наличие которых может свести на нет все преимущества "хорошей" схемы базы данных.

Так вот, в "ненормализованных" реляционных моделях данных допускается хранение в качестве элемента кортежа кортежей (записей), массивов (регулярных индексированных множеств данных), регулярных множеств элементарных данных, а также отношений. При этом такая вложенность может быть, по существу, неограниченной. Если внимательно продумать эти идеи, то станет понятно, что они приводят (только) к логически обособленным (от физического представления) возможностям иерархической модели данных. Но это уже не так уж и мало, если учесть, что к настоящему времени фактически полностью сформировано теоретическое основание реляционных баз данных с отказом от нормализации. Скорее всего, в этой теории все еще имеются темные места (они наличествуют даже в классической реляционной теории), но тем не менее большинство известных теоретических результатов реляционной теории уже распространено на ненормализованную модель, и даже такой пурист реляционной модели, как Дейт, полагает возможным использование ограниченной и контролируемой реляционной модели в SQL-3.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.