Рефераты. Автоматизація доступу до каналів комп'ютерних мереж

Мережа з типовою топологією (шина, кільце, зірка), в якій всі фізичні сегменти розглядаються як одне середовище, що розділяється, виявляється неадекватній структурі інформаційних потоків у великій мережі. Наприклад, в мережі із загальною шиною взаємодія будь-якої пари комп'ютерів займає її на весь час обміну, тому при збільшенні числа комп'ютерів в мережі шина стає вузьким местомом. Комп'ютери одного відділу вимушені чекати, коли закінчить обмін пари комп'ютерів іншого відділу, і це при тому, що необхідність в зв'язку між комп'ютерами двох різних відділів виникає набагато рідше і вимагає зовсім невеликої пропускної спроможності.

Цей випадок ілюструє рис. 1.8, а. Тут показана мережа, побудована з використанням концентраторів. Хай комп'ютер А, що знаходиться в одній підмережі з комп'ютером В, посилає йому дані. Не дивлячись на розгалужену фізичну структуру мережі, концентратори поширюють будь-який кадр по всіх її сегментах. Тому кадр, що посилається комп'ютером А комп'ютеру В, хоча і не потрібний комп'ютерам відділів 2 і 3, відповідно до логіки роботи концентраторів поступає на ці сегменти теж. І до тих пір, поки комп'ютер В не отримає адресований йому кадр, жоден з комп'ютерів цієї мережі не зможе передавати дані.

Така ситуація виникає через те, що логічна структура даної мережі залишилася однорідною - вона ніяк не враховує збільшення інтенсивності трафіку усередині відділу і надає всім парам комп'ютерів рівні можливості по обміну інформацією (рис. 1.8, б).

Вирішення проблеми полягає у відмові від ідеї єдиного однорідного середовища, що розділяється. Наприклад, в розглянутому вище прикладі бажано було б зробити так, щоб кадри, які передають комп'ютери відділу 1, виходили б за межі цієї частини мережі в тому і лише в тому випадку, якщо ці кадри направлені якому-небудь комп'ютеру з інших відділів. З іншого боку, в мережу кожного з відділів повинні потрапляти ті і лише ті кадри, які адресовані вузлам цієї мережі. При такій організації роботи мережі її продуктивність істотно підвищитися, оскільки комп'ютери одного відділу не простоюватимуть в той час, коли обмінюються даними комп'ютери інших відділів.

Рис. 1.8. Суперечність між логічною структурою мережі і структурою інформаційних потоків

Неважко відмітити, що в запропонованому рішенні ми відмовилися від ідеї загального середовища, що розділялося, в межах всієї мережі, хоча і залишили її в межах кожного відділу. Пропускна спроможність ліній зв'язку між відділами не повинна збігатися з пропускною спроможністю середовища усередині відділів. Якщо трафік між відділами складає тільки 20 % трафіку усередині відділу (як вже наголошувалося, ця величина може бути іншій), то і пропускна спроможність ліній зв'язку і комунікаційного устаткування, що сполучає відділи, може бути значно нижче за внутрішній трафік мережі відділу.

Таким чином, розповсюдження трафіку, призначеного для комп'ютерів деякого сегменту мережі, тільки в межах цього сегменту, називається локалізацією трафіку. Логічна структуризація мережі - це процес розбиття мережі на сегменти з локалізованим трафіком.

Для логічної структуризації мережі використовуються такі комунікаційні пристрої, як мости, комутатори, маршрутизатори і шлюзи.

Міст (bridge) ділить середовище передачі мережі, що розділяється, на частини (часто звані логічними сегментами), передаючи інформацію з одного сегменту в іншій тільки в тому випадку, якщо така передача дійсно необхідна, тобто якщо адреса комп'ютера призначення належить іншій підмережі. Тим самим міст ізолює трафік однієї підмережі від трафіку інший, підвищуючи загальну продуктивність передачі даних в мережі. Локалізація трафіку не тільки економить пропускну спроможність, але і зменшує можливість несанкціонованого доступу до даних, оскільки кадри не виходять за межі свого сегменту і їх складніше перехопити зловмисникові.

На рис. 1.9 показана мережа, яка була отримана з мережі з центральним концентратором (див. рис. 1.9) шляхом його заміни на міст. Мережі 1-го і 2-го відділів складаються з окремих логічних сегментів, а мережа відділу 3 - з двох логічних сегментів. Кожен логічний сегмент побудований на базі концентратора і має просту фізичну структуру, утворену відрізками кабелю, що пов'язують комп'ютери з портами концентратора.

Рис. 1.9. Логічна структуризація мережі за допомогою моста

Мости використовують для локалізації трафіку апаратні адреси комп'ютерів. Це утрудняє розпізнавання приналежності того або іншого комп'ютера до певного логічного сегменту - сама адреса не містить ніякої інформації із цього приводу. Тому міст достатньо спрощено представляє ділення мережі на сегменти - він запам'ятовує, через який порт на нього поступив кадр даних від кожного комп'ютера мережі, і надалі передає кадри, призначені для цього комп'ютера, на цей порт. Точної топології зв'язків між логічними сегментами міст не знає. Через це застосування мостів приводить до значних обмежень на конфігурацію зв'язків мережі - сегменти мають бути сполучені так, щоб в мережі не утворювалися замкнуті контури.

Комутатор (switch, switching hub) за принципом обробки кадрів нічим не відрізняється від моста. Основна його відмінність від моста полягає в тому, що він є свого роду комунікаційним мультипроцесором, оскільки кожен його порт оснащений спеціалізованим процесором, який обробляє кадри по алгоритму моста незалежно від процесорів інших портів. За рахунок цього загальна продуктивність комутатора зазвичай набагато вище за продуктивність традиційного моста, що має один процесорний блок. Можна сказати, що комутатори - це мости нового покоління, які обробляють кадри в паралельному режимі.

Обмеження, зв'язані із застосуванням мостів і комутаторів, - по топології зв'язків, а також ряд інших, - привели до того, що у ряді комунікаційних пристроїв з'явився ще один тип устаткування - маршрутизатор (router). Маршрутизатори надійніше і ефективніше, ніж мости, ізолюють трафік окремих частин мережі один від одного. Маршрутизатори утворюють логічні сегменти за допомогою явної адресації, оскільки використовують не плоскі апаратні, а складені числові адреси. У цих адресах є поле номера мережі, так що всі комп'ютери, у яких значення цього поля однакове, належать до одного сегменту, званого в даному випадку підмережею (subnet).

Окрім локалізації трафіку маршрутизатори виконують ще багато інших корисних функцій. Так, маршрутизатори можуть працювати в мережі із замкнутими контурами, при цьому вони здійснюють вибір найбільш раціонального маршруту з декількох можливих. Мережа, представлена на рис. 1.10, відрізняється від своєї попередниці (див. рис. 1.10) тим, що між підмережами відділів 1 і 2 прокладений додатковий зв'язок, який може використовуватися як для підвищення продуктивності мережі, так і для підвищення її надійності.

Рис. 1.10. Логічна структуризація мережі за допомогою маршрутизаторів

Іншою дуже важливою функцією маршрутизаторів є їх здатність зв'язувати в єдину мережу підмережі, побудовані з використанням разных мережевих технологій, наприклад Ethernet і Х.25.

Окрім перерахованих пристроїв окремі частини мережі може сполучати шлюз (gateway). Зазвичай основною причиною, по якій в мережі використовують шлюз, є необхідність об'єднати мережі з різними типами системного і прикладного програмного забезпечення, а не бажання локалізувати трафік. Проте шлюз забезпечує і локалізацію трафіку як деякий побічний ефект.

Крупні мережі практично ніколи не будуються без логічної структуризації. Для окремих сегментів і підмереж характерні типові однорідні топології базових технологій, і для їх об'єднання завжди використовується устаткування, що забезпечує локалізацію трафіку, - мости, комутатори, маршрутизатори і шлюзи.

1.3 Висновок

Таким чином, виходячи з проведеного аналізу організації каналів передачі даних в комп'ютерних мережах можна зробити ряд висновків:

у межах тієї або іншої архітектури КМ повинна забезпечуватись погоджена взаємодія різних її структур. Так, при деякій логічній структурі, яка відповідає прийнятій архітектурі КМ, може бути побудована множина фізичних структур у вигляді різнорідних каналів передачі даних, що впливають на властивості та можливості мережі. Вони являють собою узагальнений алгоритм інформаційного процесу, що протікає в КМ;

при передачі дискретних даних по каналах передачі даних застосовуються два основні типи фізичного кодування - на основі синусоїдального несучого сигналу і на основі послідовності прямокутних імпульсів. Перший спосіб часто називається також модуляцією або аналоговою модуляцією, підкреслюючи той факт, що кодування здійснюється за рахунок зміни параметрів аналогового сигналу. Другий спосіб звичайно називають цифровим кодуванням. Ці способи відрізняються шириною спектру результуючого сигналу і складністю апаратури, необхідної для їх реалізації.

Тому для детального вивчення особливостей доступу до каналів передачі даних розглянемо сутність існуючих методі доступу.

Розділ 2. Фізична сутність та порядок організації каналів комп'ютерних мереж

Канали передачі даних є фундаментом будь-якої мережі. Якщо в каналах щодня відбуваються короткі замикання, контакти роз'ємів то відходять, то знову входять у щільне з'єднання, додавання нової станції призводить до необхідності тестування десятків контактів роз'ємів через те, що документація на фізичні з'єднання не ведеться. Очевидно, що на основі таких каналів передачі даних будь-яке найсучасніше і продуктивне устаткування буде працювати погано. Користувачі будуть незадоволені великими періодами простоїв і низькою продуктивністю мережі, а обслуговуючий персонал буде в постійній "запарці", розшукуючи місця коротких замикань, обривів і поганих контактів. Причому проблем з каналами передачі даних стає набагато більше при збільшенні розмірів мережі.

2.1 Структурована кабельна система комп'ютерної мережі

Відповіддю на високі вимоги до якості каналів зв'язку в комп'ютерних мережах стали структуровані кабельні системи.

Структурована кабельна система (СКС) (Structured Cabling System, SCS) - це набір комутаційних елементів (кабелів, роз'ємів, конекторів, кросових панелей і шаф), а також методика їх спільного використання, яка дозволяє створювати регулярні, легко розширювані структури зв'язків в комп'ютерних мережах.

Структурована кабельна система представляє свого роду "конструктор", за допомогою якого проектувальник мережі будує потрібну йому конфігурацію зі стандартних кабелів, з'єднаних стандартними роз'ємами, які комутуються на стандартних кросових панелях. При необхідності конфігурацію зв'язків можна легко змінити - додати комп'ютер, сегмент, комутатор, вилучити непотрібне устаткування, а також замінити з'єднання між комп'ютерами і концентраторами.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.