Рефераты. Электронно-микроскопические методы исследования в медицине

Электронно-микроскопические методы исследования в медицине

ЭЛЕКТРОННАЯ МИКРОСКОПИЯ

Электронная микроскопия – метод морфологического исследования объектов с

помощью потока электронов, позволяющих изучить структуру этих объектов на

макромолекулярном и субклеточном уровнях.

После выпуска первой промышленной модели просвечивающего

(трансмиссионного) электронного микроскопа ЭМ прошла большой путь развития

и позволила перейти на качественно новый уровень изучения материи. ЭМ нашла

широкое применение в морфологии, микробиологии, вирусологии, биохимии,

онкологии, медицинской генетике, иммунологии. Благодаря ЭМ раскрыта

субмикроскопическая структура клеток, открыт ряд неизвестных ранее

клеточных органелл, таких как лизосомы, рибосомы, эндоплазматический

ретикулум, микротрубочки, цитоскелет, структуры, специфичные для отдельных

видов клеток. ЭМ позволила понять многие тонкие механизмы развития

болезней, в том числе на ранних этапах их возникновения, еще до появления

чёткой клинической симптоматики.

ЭМ все шире применяется для ранней диагностики заболеваний, а также для

выявления этиологии информационных процессов. Её используют в онкологии для

определения гистогенеза опухолей, что имеет важное значение в лечении и

прогнозе онкологического заболевания. В нефрологии исследования с помощью

ЭМ материала, полученного при пункционной биопсии, позволяет выявить ранее

морфологические изменения структур пачек, диагностировать форму

гломерулонефрита и т.п. При ЭМ пунктатов печени удается провести

дифференциальную диагностику гепатитов, гепатозов и других заболеваний

печени, определить активность процесса и нередко его этиологию.

Исследования строения материи на субклеточном и макромолекулярном уровнях

сдерживаются возможностями разрешающей способности электронных микроскопов.

Использование ЭМ в сочетании с другими методами, например, с

авторадиографией, гистохимическими, иммунологическими, обусловило появление

электронной авторадиографии, электронной гистохимии, иммунной электронной

микроскопии (электронной иммуноморфологии) и других. Это позволило

значительно расширить информацию, получаемую с помощью ЭМ, наблюдать

структурное выражение течения биохимических процессов в клетке, что, в свою

очередь, подтвердило один из основных методологических принципов

современной биологии – диалектическое единство структуры и функции.

ЭМ требует специальной подготовки объектов изучения, от которой в

значительной мере зависят возможности метода. В соответствии с целями

исследования методика такой подготовки может быть различной. Однако

непременным условием для любых электронно-микроскопических исследований

является фиксация тканей или микробов с максимальным сохранением их

прижизненного строения. Существуют два принципиально различных способа

фиксации: химический и физический, каждый из которых имеет различные

варианты.

В ЭМ, как правило, используют химическую фиксацию с помощью фиксаторов,

обладающих стабилизирующими свойствами. Универсального для любых тканей

фиксатора не существует, поэтому в зависимости от задачи конкретного

исследования применяют соответствующие фиксаторы. При выборе химических

фиксаторов исходят из их способности коагулировать белки (спирты, ацетон,

некоторые кислоты, соли тяжелых металлов и др.) либо стабилизировать

липиды и гели (четырехокись осмия, глутаровый альдегид, формалин,

двухромовоксильный калий и др.).

Для исследования берут биопсийный материал или материал от трупа человека

или животных вскоре после наступления смерти. Существуют оптимальные сроки

взятия различных тканей и клеток, обычно исчисляемые минутами. Чем раньше

ткань помешают в фиксатор, тем более достоверные данные получают о

прижизненной структуре клеток. Фиксаторы обладают различной скоростью

проникновения в ткань: от этого зависит возможная величина объекта

исследования. Так, четырехокись осмия и глутаровый альдегид проникают в

ткань на 0,1-0,5 мм примерно за 1 - 1,5 часа, но для некоторых тканей оно

может быть увеличено до 4 часов или до 20-30 мин. В отдельных случаях

допускается в течение одних суток. Наибольшее распространение получила

фиксация материала в глутаровом альдегиде с последующей дофиксацией в

четырехокиси осмия. Глутаровый альдегид лучше, чем четырехокись осмия

фиксирует белки, но хуже стабилизирует липиды, что и обуславливает

использования обоих фиксаторов как дополняющих друг друга.

Для избирательной фиксации отдельных субклеточных структур используют

более специфические фиксаторы (перманганат калия, двухромовокислый калий и

др.). Качество фиксации в значительной степени зависит от рН и

осмотического давления фиксирующего раствора. Оптимальным является рН 7,2-

7,4, что соответствует физиологическим параметрам. Поэтому применяют

буферные растворы. Чаще применяют фосфатные или какодилатный буферы.

Физиологическое осмотическое давление создают путем добавления осмотически

активных веществ, например сахарозы или некоторых солей.

Имеется несколько методов химической фиксации: перфузионный, когда

фиксатор вводят в ток крови, фиксация на месте, когда фиксатор вводят в

ткань до ее иссечения, метод погружения иссеченных кусочков ткани в

фиксатор. Для замедления аутолитических процессов, протекающих в иссеченных

кусочков ткани до полной их фиксации, последнюю проводят при температуре 2-

5 градусов.

После фиксации необходимо осуществить обезвоживание ткани. Этот процесс

должен быть относительно быстрым, постепенным и вместе с тем обеспечить

максимально полное удаление воды из образца, что достигается проведением

подлежащей исследованию ткани через батарею спиртов или ацетонов восходящей

концентрации (от 30 до 100%) в течение одного часа.

Следующим важным этапом подготовки материала для ЭМ является заливка

(заключение) тканей в заливочные среды с целью получения блока, обладающего

оптимальным сочетанием твердости и эластичности, позволяющим приготовить

тонкий срез ткани (толщиной не менее 100 нм), через который может пройти

электронный луч. Первыми заливочными материалами были метилметакрилат и

бутилметакрилат. В настоящее время они почти не применяются, т.к. токсичны

и легко возгоняются под пучком электронов, что приводит к выраженным

артефактам и загрязнению электронного микроскопа. Наиболее широко для

заливки тканей используют эпоксидные смолы, в основном аралдит и эпон,

часто применяемые совместно. Менее распространены полиэфирные смолы

(вестопал), водорастворимые заливочные смеси, из которых чаще пользуются

гликольметакрилатом и дуркупаном. Однако, не одна заливочная среда не

является химически инертной и в какой-то степени оказывает влияние на

ткань: это необходимо учитывать при интерпретации результатов

микрокопирования.

В последние годы широкое применение нашла заливка в так называемые

компаунды, т.е. в смесь определенных веществ: основу (мономера),

отвердителя, придающего образующемуся полимеру прочность и твердость,

пластификатора, обеспечивающего эластичность и упругость полимера,

инициатора, диссациирующего с образованием свободных радикалов, ускорителя,

который, взаимодействуя с мономером, освобождает активные дополнительные

радикалы, и катализатора, способствующего началу реакции полимеризации. В

практике обычно используют компаунд, состоящий из основы, отвердителя,

пластификатора и катализатора, роль которого может играть ускоритель или

инициатор. Имеется достаточно большое количество способов пропитки ткани

заливочными средствами. Процесс пропитки обычно протекает при комнатной

температуре или в термостате при температуре 30? в течение 48 часов. Затем

кусочки ткани переносят в маркированные желатиновые капсулы или специальные

формы, наполненные заливочной смесью. Для полимеризации смеси капсулы на 48

часов помещают в термостат при температуре 60?. В результате полимеризации

образуется блок, обладающий соответствующими свойствами.

Для получения ультратонких срезов толщиной 30-50 нм используются

стеклянные или алмазные ножи. Алмазные ножи долговечнее стеклянных, но из-

за высокой стоимости они не получили широкого распространения.

К задней стороне ножа прикрепляют специальную ванночку и устанавливают на

ультратом, в ванночку наливают 10% раствор этилового спирта и 10% раствор

ацетона на дистиллированной воде. В подвижном держателе ультратома

закрепляют блок с тканью. Резка блока осуществляется за счет

поступательного движения стержня держателя, а подъем и опускание держателя

относительно режущей кромки ножа обеспечиваются электронной схемой. Обычно

в начале изготовляют так называемые тонкие срезы толщиной 1 мкм, изучая

которые, выбирают интересующий исследователя участок. Сориентируя

соответствующим образом полутонкий срез и блок, проводят заточку блока с

таким расчетом, чтобы на вершине образовавшийся пирамиды находился

необходимый участок. Затем изготовляют ультратонкие срезы толщиной 30-50

нм. Из ванночки срезы переносят на металлические сетки.

Для констатирования срезов применяют вещества с большим атомным весом,

такие как соли тяжелых металлов, естественно рассеивающие электроны. Ионы

некоторых из этих веществ могут образовывать связи с кислородом и

присоединятся к фосфатным группам нуклеиновых кислот. Другие, особенно

уранилацетат, помимо этого, действуют как универсальные красители. Свинец

связывается с комплексами ткани и осмиевыми факторами. Обычно проводят

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.