Рефераты. Пульсары

Можно, таким образом, сказать, что предположение о вращении как источнике энергии пульсара выдерживает первую проверку: кинетическая энергия вращения нейтронной звезды достаточно велика и она способна служить резервуаром, из которого излучение черпает свою энергию. При этом на излучение тратится только небольшая доля общего расхода энергии.

Магнитосфера

Возможность и даже необходимость существования такого облака доказали американские астрофизики-теоретики П. Голдрайх и В. Джулиан. Они изучили электромагнитные явления, происходящие не на световом цилиндре, где рождается магнитно-дипольное излучение, а вблизи самой поверхности нейтронной звезды. Здесь намагниченная нейтронная звезда способна «работать» подобно динамомашине: ее вращение вызывает появление сильных электрических полей, а с ними и токов, т. е. направленных движений заряженных частиц.  Отношение электрической силы к силе тяжести, испытываемой электроном, очень велико:


Такая же оценка для протона показывает, что действующая на него электрическая сила в миллиард раз больше силы притяжения к нейтронной звезде. Это означает, что силы тяготения совершенно несущественны для заряженных частиц по сравнению с электрическими силами у самой поверхности нейтронной звезды. Электрические силы здесь необычайно велики и они способны беспрепятственно управлять движением электронов и протонов: они могут отрывать их от поверхности нейтронной звезды, ускорять их, сообщая частицам огромные энергии. Электрическая сила, действующая в поле  на частицу о зарядом , совершает на пути частицы работу. Значит проходя в электрическом поле расстояние, сравнимое с радиусом нейтронной звезды (например, от экватора до одного из полюсов), частица приобретает энергию 


 Это действительно огромная энергия, на много порядков превышающая даже энергии покоя электрона и протона. Гигантская энергия частиц соответствует их скоростям движения, приближающимся к скорости света, а фактически совпадающим с ней. Частицы высоких энергий, отрываемые от поверхности нейтронной звезды и ускоряемые сильным электрическим полем, создают поток, исходящий от нейтронной звезды и похожий на солнечный или звездный ветер. Магнитное поле увлекает этот поток во вращение вместе о нейтронной звездой. Так вокруг нее возникает расширяющаяся и вращающаяся магнитосфера. Рождение и ускорение частиц, образующих магнитосферу, требует значительной энергии, которая черпается из кинетической энергии вращения нейтронной звезды.  Теоретический анализ, проделанный П. Голдрайхом и В.; Джулианом, показывает, что на это тратится приблизительно столько же энергии, сколько и на магнитно-дипольное излучение. При этом и само магнитно-дипольное излучение пополняет запас энергии магнитосферы, оно практически не выходит наружу и поглощается магнитосферой, передавая свою энергию ее частицам. Нет сомнения, что именно в магнитосфере нейтронной звезды и разыгрываются многообразные физические процессы, определяющие все наблюдаемые проявления пульсара. Полной и исчерпывающей теории этих процессов пока нет; теория радиопульсаров находится в процессе развития, и даже на главные вопросы она еще не может дать законченного и убедительного ответа. Нас, прежде всего интересует, как возникает направленность в излучении пульсара, создающая этот естественный радиомаяк. Сейчас можно изложить лишь самые предварительные соображения, не претендующие на строгую доказательность, но содержащие, тем не менее, ряд важных идей. Вероятно, нужно исходить из того, что частицы высокой энергии, заполняющие магнитосферу пульсара, способны излучать электромагнитные волны очень высокой частоты, или, на квантовом языке, фотоны очень высокой энергии. Один из физических механизмов излучения связан с движением частиц в сильных магнитных полях.  Частицы следуют главным образом вдоль магнитных силовых линий, а так как силовые линии изогнуты, движение частиц не может быть прямолинейным и равномерным. Отклонение же от прямолинейного и равномерного движения означает ускорение (или торможение) частицы и, следовательно, сопровождается излучением электромагнитных волн. Согласно расчетам электромагнитные волны такого происхождения принадлежат к гамма-диапазону. В свою очередь гамма-фотоны способны рождать (в присутствии сильного магнитного поля) пары электронов и позитронов.  Электроны и позитроны также излучают электромагнитные волны при своем движений в магнитном поле, а эти новые волны способны рождать новые пары частиц         и т.д. Такой каскад процессов развивается главным образом вблизи магнитных полюсов нейтронной звезды, где сходятся магнитные силовые линии и поле особенно велико.  Здесь формируются, как можно полагать, направленные потоки согласованно движущихся частиц, которые - как в антенне - излучают согласованно и направленно, создавая луч пульсара. Магнитная ось звезды не совпадают с ее осью вращения, и потому этот луч вращается подобно лучу маяка. Но как в действительности это происходит, еще предстоит выяснить.

Основная доля энергии вращения, теряемой нейтронной звездой, преобразуется не в наблюдаемое излучение пульсара, а в энергию частиц, ускоряемых в магнитосфере нейтронной звезды. Радиопульсары являются, таким образом, мощным источником частиц высоких энергий.  Электроны высоких энергий, рождаемые пульсаром Крабовидной туманности, непосредственно проявляют себя в свечении туманности. Об этом речь впереди, а здесь стоит сказать несколько слов об эволюции и дальнейшей судьбе радиопульсаров. С течением времени пульсар теряет свою энергию вращения и магнитную энергию, так что постепенно и частота вращения, и магнитное поле нейтронной звезды убывают. Из-за этого уменьшается электрическое поле у поверхности звезды, снижается эффективность отрыва частиц и их ускорения. Рано или поздно частицы высоких энергий перестанут рождаться, и радиоизлучение пульсара прекратится. Если бы радиопульсар составлял пару вместе с обычной звездой, он мог бы тогда превратиться в барстер, излучение которого питается аккреционным потоком, увлекаемым с поверхности звезды-компаньона. Но (за очень редким исключением, как говорилось) радиопульсары - это одиночные нейтронные звезды, а не члены тесных двойных систем. И тем не менее свечение, хотя и довольно слабое, все же может возникать.  По мнению советского астрофизика А. И. Цыгана оно может быть обязано аккреции нейтрального межзвездного газа, сквозь который движется потухший радиопульсар.  Излучению такого происхождения отвечает светимость


, и большая часть испускаемых квантов принадлежит гамма-диапазону. Поиски таких бывших пульсаров, а ныне гамма-звезд - одна из интересных задач гамма-астрономии.

Пульсары и космические лучи.

Еще в 1934г. В. Бааде и Ф. Цвикки указали на возможную связь между вспышками сверхновых, нейтронными звездами и космическими лучами - частицами высоких энергий, приходящими на Землю из космического пространства.

Космические лучи были открыты более 60 лет назад и с тех пор служат предметом тщательного изучения.  Интерес к ним связан, прежде всего, с возможностью использовать их для исследования взаимодействий элементарных частиц при высоких энергиях, недостижимых в лабораторных ускорительных устройствах. Наибольшая энергия частицы, зарегистрированная в космических лучах:


 тогда как на лучших современных ускорителях достигаются энергии на 8 порядков меньше. Частицы высоких энергии, приходящие к Земле из межпланетного и межзвездного пространства, порождают в земной атмосфере новые, вторичные частицы, тоже обладающие немалыми энергиями. Но более всего интересны, очевидно, исходные, первичные частицы. Они представляют собою главным образом протоны; среди них имеются в небольшом числе и атомные ядра таких элементов, как гелий, литий, бериллий, углерод, кислород и т. д., вплоть до урана. Кроме редких случаев экстремально больших энергий, энергии в космических лучах в расчете на один нуклон (протон или нейтрон) не превышают


 Средняя концентрация частиц космических лучей в межзвездном пространстве нашей Галактики оценивается величиной


 Средняя энергия частицы


 Плотность энергии космических лучей, т. е. энергия частиц в единице объема,


Последняя величина сравнима с плотностью энергии магнитного поля Галактики и близка к средней плотности кинетической энергии хаотических движении облаков межзвездного газа. Электронов в космических лучах не более 1-2 %. Поток космических лучей изотропен - он приходят к Земле равномерно со всех сторон (кроме, конечно, частиц, испускаемых Солнцем).

Космические лучи, распространяясь в межзвездных магнитных полях, способны создавать синхротронное излучение. Общее радиоизлучение Галактики известно с конца 40-х годов. Его мощность составляет


Напомним, что мощность оптического излучения Галактики


 эквивалентна свету приблизительно


солнц. Однако радиомощность Галактики несравненно больше. Объяснение общего радиоизлучения Галактики как синхротронного излучения электронов космических лучей предложено В. Л„ Гинзбургом в 1950—1951 гг. Основной вопрос физики космических лучей с самого начала ее развития — природа их высокой энергии. Он до сих пор еще не решен. Обсуждается целый ряд интересных возможностей: ускорение частиц в межзвездных магнитных полях (как это предполагал еще в 40-е годы Э. Ферми), в оболочках, сбрасываемых при вспышках сверхновых (эта идея развивается сейчас многими авторами), в ядре Галактики или даже вне ее — в квазарах.  Открытие пульсаров, анализ их электродинамики, данные о частицах высокой энергии в Крабовидной туманности, получаемые из анализа ее синхротронного излучения,—все это указывает на пульсары как на эффективный источник космических лучей. Давняя идея В. Бааде и Ф. Цвикки о Единстве происхождения нейтронных звезд и космических лучей приобретает сейчас новые основания.

Возраст пульсаров

Пульсары - вращающиеся замагниченные нейтронные звезды, излучение которых принимается на Земле в виде периодических импульсов. Энергия излучения черпается из энергии вращения, за счет чего частота вращения нейтронной звезды постепенно уменьшается. В простейшей модели, по наблюдениям периода пульсара и скорости его замедления можно оценить возраст пульсара . Это время, называемое "динамическим возрастом" пульсара, использовалось для оценки возраста на протяжении последних 30 лет. Однако новые наблюдения, выполненные с помощью радиотелескопа VLA (Нью-Мехико), поставили данный метод оценки возраста под сомнение. Пульсар B1757-24 наблюдается вблизи оболочки сверхновой, при взрыве которой он, как полагают, родился. За счет несферичности взрывов сверхновых нейтронные звезды обычно получают отдачу и движутся с большими пекулярными скоростями. Измерив пространственное смещение пульсара B1757-24 за 7 лет, астрономы нашли скорость его движения - 560 км с- 1. С этой скоростью пульсар мог удалиться от места взрыва сверхновой до его современного положения за время, не меньшее, чем 40000 лет. Между тем, динамический возраст пульсара составляет всего 17000 лет. Столь сильное расхождение оценок не находит объяснения в существующих теориях излучения пульсаров. Однако выдвигалась гипотеза о том, что пульсар случайно оказался вблизи места взрыва сверхновой и не связан с ней своим происхождением.

Радиоастрономы открыли пульсар – быстро вращающуюся сверхплотную нейтронную звезду, имеющий возраст меньше, чем у всех ранее обнаруженных.

На инфракрасном снимке показан остаток от взрыва сверхновой.

Стрелкой указано направление движения пульсара, полученное из наблюдений в период с 1989 по 2000 г.

Новый пульсар получил обозначение В1951+32, а остаток от взрыва сверхновой – СТВ 80.

Оба объекта удалены от нас на расстояние 8000 световых лет.


После взрыва сверхновой на ее месте образовалась сверхплотная нейтронная звезда.

Скорость перемещения пульсара составляет более 800000 км в час. Двигаясь с такой скоростью, пульсару потребовалось бы 64000 лет, чтобы переместиться с места взрыва в ту точку, где его сейчас наблюдают. Таким образом, астрономы считают, что возраст пульсара приблизительно 64000 лет.

Однако, используя метод зависимости скорости вращения пульсара от возраста, ученые оценили время жизни в 107000 лет.

Астрономы предполагают, что со временем, вращение пульсара замедляется. Это происходит из-за постоянного уменьшения количества излучаемой энергии.

Таким образом, астрономам придется пересмотреть все ранее сделанные оценки возраста пульсаров.


Самый молодой пульсар
 

Астрономы Национального Научного Фонда, использовавшие в своей работе телескоп Green Bank Telescope, зафиксировали слабый сигнал самого молодого из известных на сегодняшний день пульсаров. Его возраст составляет всего 820 лет.
Считается, что пульсар возник в результате взрыва сверхновой, происшедшего летом 1181 года и зафиксированного в китайских и японских летописях. В течение последних 20 лет астрономы занимались исследованием остатков сверхновой 3C58, расположенной в созвездии Кассиопея на расстоянии 10000 световых лет, пытаясь зафиксировать слабые сигналы молодого пульсара. В конце 2001 года обсерватория Чандра подтвердила факт существования космического объекта, однако, до недавнего времени он оставался недоступным для радиотелескопов. И наконец-то пульсар "услышали"!
Обнаружение необычайно молодого пульсара позволяет детально исследовать природу подобных небесных тел - в частности, точно выяснить изменения в скорости его вращения, а впоследствии определить, каким образом пульсары генерируют и излучают радиосигналы.

Пульсар на месте сверхновой

Новые данные, полученные от Chandra X-ray Observatory, показывают, что хорошо известный пульсар созвездия Стрельца связан со взрывом сверхновой 386 года нашей эры, которую наблюдали астрономы в древнем Китае.

В 70-х годах радиоастрономы открыли расширяющуюся газовую туманность с частицами высокой энергии, известную как G11.2-0.3. Если результаты подтвердятся, то это будет второй пульсар, связанный со взрывом сверхновой. За прошедшие 2000 лет было менее 10 сообщений, которые возможно описывали вспышку сверхновой. В настоящее время доказано, что только в Крабовидной туманности находится пульсар, который образовался после взрыва сверхновой в 1054 г. таким образом, это единственная нейтронная звезда с известным возрастом.

На снимке хорошо видно, что пульсар находится строго в центре остатка от взрыва сверхновой.

Скорость вращения пульсара составляет 14 оборотов в секунду. Он был сформирован после взрыва сверхновой в 386 г. и, следовательно, имеет возраст 1615 лет.

Однако космологи и астрофизики, используя модели на основе скорости вращения пульсара, определили его возраст около 24000 лет, что очень сильно расходится с предыдущей версией.
















Список использованной литературы

  1. Арзуманян “Небо. Звёзды. Вселенная” Москва. 1987 г.
  2. Воронцов Б.А. “Очерки о Вселенной” Москва. 1976 г.
  3. Зигель Ф.Ю. “Сокровища звёздного неба” Москва. 1976 г.
  4. Климишин И.А. “Астрономия наших дней” Москва. 1980
  5. Агекян Т.А. “Звёзды. Галактики. Метагалактики” Москва. 1982г.
  6. Чихевский А.А. “ Земное эхо солнечных бурь” Москва. 1976г


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.