Рефераты. Пособие для учителя астрономии

Предпочитают запускать спутник со скоростью несколько большей, чем круговая, так как при этом его время жизни заметно больше, чем спутника, запущенного с круговой скоростью.


6. Может ли искусственный спутник иметь такую орбиту, чтобы его трасса проходила бы только через Европу и Африку?


Такую трассу будет иметь суточный искусственный спутник Земли с наклонением орбиты i » 60o.


7. Как с космического корабля, движущегося по круговой орбите, отправить на Землю какое-либо тело?


Это можно сделать тремя способами:

1) отбросить тело назад по орбите, то есть тем самым уменьшить его скорость и перевести на эллиптическую орбиту, лежащую внутри круговой;

2) тело надо бросить вниз, это тоже приведет его на внутреннюю эллиптическую орбиту;

3) сочетанием первого и второго способов.


8. После отделения спутника от последней ступени ракеты-носителя, последняя движется вначале за спутником, а затем обгоняет его? Почему?


Имея большее поперечное сечение, ракета-носитель сильнее тормозится атмосферой; вследствие чего снижаясь, она начинает двигаться с большей угловой скоростью вокруг Земли.


9. Какими параметрами орбит отличаются друг от друга экваториальные, полярные, синхронные, суточные, стационарные искусственные спутники Земли?


У полярных спутников ось вращения Земли лежит в плоскости орбиты; у экваториальных спутников плоскость орбиты совпадает с плоскостью экватора. Синхронные спутники имеют период обращения кратный периоду вращения Земли. У суточных спутников эти два периода совпадают. Геостационарный спутник – это экваториальный суточный спутник. Его под спутниковая точка не перемещается по поверхности Земли.


10. У искусственного спутника Земли горизонтальные координаты остаются неизменными. Какой вывод можно сделать о вращении Земли, наклонении, эксцентриситете и большой полуоси орбиты спутника?


Постоянство азимута и высоты ИСЗ означает, что это геостационарный спутник. Такой спутник может существовать только у вращающейся планеты. Орбита спутника единственная у данной планеты, она круговая, располагается в экваториальной плоскости Земли.


11. Показывают ли фазы искусственные спутники Земли?


Конфигурации искусственных спутников Земли и Луны совпадают. Изменение фазы оказывает влияние на изменение блеска ИСЗ.


12. Почему большинство искусственных спутников бывают видны на небе в вечерние часы после захода Солнца и предутренние, перед восходом Солнца?


В это время тень от Земли располагается близко к горизонту и спутник на большей части видимой траектории не затмевается.


13. Движение пилотируемого космического корабля в свободном полете осуществляется так, что его продольная ось всегда направлена по радиусу Земли. Вращается ли космический корабль? Какое естественное тело движется так же?


Космический корабль вращается вокруг собственной оси с периодом, равным периоду обращения корабля вокруг Земли. Аналогичная ситуация имеет место в системе Земля-Луна.


14. Какое естественное небесное тело движется под действием той же силы, что и искусственные спутники Земли?


Луна под действием силы притяжения к Земле.


15. Какие естественные небесные тела движутся под действием той же силы, что и автоматические межпланетные станции?


Все планеты Солнечной системы под действием силы притяжения к Солнцу.


16. Выполняется ли закон сохранения механической энергии для спутника, движущегося по эллиптической орбите? Какие превращения энергии происходят при переходе спутника из апогея в перигей?


Механическая энергия спутника, движущегося в вакууме, остается постоянной величиной. В апогее потенциальная энергия наибольшая; при переходе в перигей часть потенциальной энергии переходит в кинетическую.


17. Зачем нужны надувные спутники?


Спутники-баллоны применяют для изучения земной атмосферы и активности Солнца. Такие спутники, обладающие малой массой и большим поперечным сечением, легко реагируют на изменения плотности атмосферы.


18. Какой спутник и зачем сделан из урана?


В 1975 году Францией был запущен искусственный спутник Земли, изготовленный из урана-238. Его масса 47 кг, радиус 25 см. Поверхность покрыта уголковыми отражателями и обеспечивает точность световой локации от наземных объектов до 2 см. Использование материала большой плотности позволяет свести к минимуму силы сопротивления земной атмосферы.


19. Как заряжены искусственные спутники?


ИСЗ приобретают положительный заряд в результате облучения их космическими лучами, состоящими преимущественно из протонов и a – частиц.


20. На каких этапах полета космонавт имеет наибольший вес? наименьший вес?


На этапах взлета и посадки, когда космический корабль движется с ускорением, имеет место перегрузка; б свободном полете по орбите наблюдается невесомость.


21. Почему внутри космического корабля, находящегося в свободном полете, тела невесомы?


Космический корабль и находящиеся в нем тела падают на Землю с одинаковым ускорением, вследствие чего для тел исчезает реакция опоры. Это воспринимается как потеря веса. Это состояние называется динамической невесомостью.


22. Космонавт вышел в открытый космос. Сохранится ли у него состояние невесомости, если он находится на поверхности корабля?


В данном случае космонавт будет иметь вес вследствие притяжения к космическому кораблю, однако его значение будет пренебрежимо мало.


23. При каких условиях на космическом корабле вес космонавта оказывается равным его весу на поверхности Земли?


Возможны два варианта:

1) космический корабль должен двигаться поступательно с ускорением, равным ускорению свободного падения на поверхности Земли;

2) космический корабль должен вращаться с такой угловой скоростью, чтобы в месте нахождения космонавта на корабле центростремительное ускорение было равно 9.8 м/c2.


24. Справедливы ли законы Паскаля и Архимеда внутри космического корабля, находящегося в свободном полете?


Закон Паскаля справедлив, а закон Архимеда не действует, так как и тело, и жидкость оказываются невесомыми.


25. Что происходит с жидкостью в закрытом сосуде на борту космического корабля?


Считаем, что жидкость занимает часть сосуда. Несмачивающая жидкость примет форму шара. Смачивающая жидкость растечется по поверхности сосуда.


26. Какие виды теплопередачи реализуются внутри космического корабля?


Из-за невесомости естественная конвекция практически не будет иметь места. Принудительная циркуляция газа обеспечивается при помощи вентиляторов; теплопроводность и лучеиспускание не зависят от невесомости.

12.                  Календарь.

 

1. В XI стол. в Персии был введен календарь, в основу которого положен цикл в 33 года; в этом цикле считалось 25 простых и 8 високосных годов. Определить величину года и ошибку персидского календаря.


Тогда в 33 годах будет 25 простых по 365 суток и 8 високосных по 366 суток. Средняя величина года поэтому равна 365,2424 ср. суток, т.-е. больше действительной только на 0,0002 ср. суток, что составит лишь в 5000 лет 1 сутки.

2. Каковы названия дней начала и конца простого года? – високосного года?


В простом году 365 суток, т. е. они состоят из 52 недель и 1 дня (365 = 52×7 + 1). Следовательно, он оканчивается тем же днем недели, каким начинается (т. е. какой день был 1-го января). Високосный год, очевидно, оканчивается днем, следующим за тем, которым год начинается.


3. «Цикл солнца» равняется 28 юлианским годам; определить, сколько недель содержит он? По прошествии его будут ли повторяться названия дней недели в прежние числа месяцев?


Простой год содержит 52 недели и 1 день, високосный 52 недели и 2 дня, поэтому в разные года дни недели падают на разные числа месяцев. Но так как в 28 юлианских годах содержится ровно 1461 неделя, то по прошествии 28 лет все числа месяцев будут повторяться в прежние дни недели.


4. Зная, что после 1-го года до Р. Хр. следовал сразу 1-й год по Р. Хр., определите, високосный или простой был 45-й год до Р. Хр., т.-е. год введения юлианского календаря?


Так как после 1-го года до Р. Хр. следовал сразу 1-й год по Р. Хр., т.-е. не было нулевого года, то 45-й год до Р. Хр. нужно считать високосным годом.


5. По постановлению Никейского собора (325 г.) православная церковь празднует пасху в первое воскресенье после первого весеннего полнолуния, т. е. после первого полнолуния, которое придется после 21-го марта.

Гаусс дал следующее простое правило для вычисления пасхи в юлианском календаре: разделив номер года на 19, 4 и 7, обозначим остатки через a, b, c; остаток  обозначим через d; остаток  через e; – тогда получим, что пасха в юлианском календаре будет (22 + d + e) марта.

Пользуясь этим правилом Гаусса, найти, когда была пасха в 1923 г.? 1030? 1954? и 2004 году по юлианскому календарю?


Для 1923 года вычисления по правилу Гаусса, дадут следующие значения: a = 4:, b = 3, c = 5, d = 1, е = 3. Следовательно, пасха в 1923 г. будет 26 марта по юлианскому календарю или 8 апреля по новому стилю. Для следующих годов предоставляется самостоятельно сделать эти вычисления.


6. Для римско-католической и протестантской церкви пасха вычисляется по несколько видоизмененной формуле Гаусса, а именно – разделив номер года на 19, 4 и 7, обозначим остатки через a, b, c; остаток  обозначим через d; остаток через e; тогда получим, что пасха в григорианском календаре будет (22 + d + e) марта.

Пользуясь этим правилом Гаусса, найти, когда будет пасха в римско-католической и протестантской церкви в 1923 г.? 1954? 1981? 2004?


Для 1923 г. вычисления по правилу Гаусса дадут следующие значения: a = 4, b = 3, c = 5, d = 10, e = 0. Следовательно, Пасха в 1923г. в римско-католической церкви будет (22 + 10 + 0) марта или 1-го апреля по григорианскому календарю.

Для следующих годов предлагается самостоятельно сделать эти вычисления.

Замечание 1. В случаях, когда в вычислении получается d = 28 или d = 29, а e = 6, нужно брать неделей раньше. Такие исключительные случаи встречаются только в григорианском календаре и то очень редко, в юлианском же календаре их совершенно не бывает.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.