Рефераты. Панорама современного естествознания

Еще несколько лет назад ученые задавали вопрос, можно ли создать сорта, сбалансированные по составу аминокислот, устойчивые к холоду, засухе, не поражаемые вредителями. Сегодня можно с уверенностью утверждать, что такие трансгенные растения уже вышли в поле. Областей применения трансгенных растений довольно много. На уровне лабораторных экспериментов ведутся работы по получению растений, устойчивых к холоду, тяжелым металлам, повышенному содержанию солей и др. Трансгенные растения, устойчивые к гербицидам (химическим соединениям, которые используют для борьбы с сорняками), к вирусам, растения с повышенным содержанием масел и незаменимых аминокислот уже выращивают на миллионах гектаров. Не менее интересен и другой аспект работ — получены трансгенные растения с измененными декоративными свойствами. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, есть все основания ожидать, что площадь под генно-инженерными растениями в будущем увеличится.

Среди последних достижений инженерной, или конструктивной, биологии следует упомянуть успешное клонирование млекопитающих (овцы, свиньи, коровы), создание первых искусственных хромосом человека, создание трансгенных мышей.

Если в плазму встроить ген (фрагмент ДНК) человека, то такая плазмида внутри бактерии или дрожжей начинает вырабатывать белок, отвечающий человеческому гену. Разработка технологии, заставляющей бактериальные или дрожжевые клетки синтезировать в больших количествах необходимые человеку для различных целей белки, положило начало новой биотехнологической эре.

Услугами генной инженерии особенно успешно пользуются фармацевты, для которых этот метод дает сравнительно дешевые, жизненно необходимые гормоны, такие как инсулин, интерферон, гормоны роста и другие, имеющие белковую природу. По заказу фармацевтов генными инженерами налажено производство человеческого гормона инсулина ( вместо ранее применяемого животного инсулина), играющего важную роль в борьбе с сахарным диабетом. Методом генной инженерии получают также достаточно дешевый и чистый человеческий интерферон — белок, обладающий универсальным антивирусным действием, антиген вируса гепатита В.

Другими важнейшими областями, в которых успешно применяются достижения генной инженерии, являются медицина и сельское хозяйство. На наших глазах современная биология превратилась в науку, которая дала начало технологиям, преобразившим производство. Биотехнология стала реальной производительной силой. Питание и медицинское обслуживание возрастающего быстрыми темпами население Земли представляют собой наиболее важные проблемы, стоящие перед человечеством, и решать их, скорее всего, придется методами биотехнологии.

Производство и применение вакцин против вирусных заболеваний позволили медикам ликвидировать полностью эпидемии чумы и оспы, от которых раньше умирали миллионы людей. Метод генной инженерии, в отличие от других методов, позволяет получить абсолютно безвредную (не содержащую инфекционного начала) вакцину. Ведутся также работы по производству вакцин от гриппа, гепатита и других вирусных заболеваний человека.

В настоящее время для производства интерферона и гормона роста в качестве источника плазмидов вместо бактерий широко применяются также дрожжи, которые на эволюционной лестнице стоят где-то между бактериями и высшими организмами. Еще одной задачей, успешно решаемой в настоящее время биотехнологией, является производство белка, содержащего незаменимую аминокислоту лизин и используемого в качестве полноценных кормовых добавок для животных.

В биотехнологии применяются не только методы генной инженерии, но и методы клеточной инженерии. Суть метода клеточной инженерии сводится к следующему. Из организма искусственно выделяют клетки, которые затем размножают в специально подобранных питательных средах. Полученные таким путем клеточные культуры используются для производства ценных лекарственных веществ и для гибридизации клеток, которые невозможно воспроизвести обычным половым путем. Методом гибридизации соматических клеток получены новые формы культурных растений (томаты, картофель). Гибридизация же животных клеток (например, раковых клеток и клеток крови — лимфоцитов) применяется для выработки ценных медицинских препаратов.

4. Проблемы происхождения жизни во Вселенной


Река времен в своем стремлении Уносит все дела людей. И топит в пропасти забвенья Народы, царства и царей.

Г. Державин

На определенном этапе эволюции материи при появлении подходящих условий во Вселенной возникла жизнь. Ее возникновение, существование и развитие, как отмечалось выше, обусловлены рядом фундаментальных свойств Вселенной, выражающихся, например, в константах, характеризующих гравитационное, электромагнитное, слабое и сильное взаимодействия. Ученые считают, что при значениях этих констант, например, гравитационной постоянной, отличающихся от наблюдаемых, жизнь во Вселенной существовать просто бы не могла. Ясно, что жизнь не могла возникнуть и на ранних стадиях расширения Метагалактики. Но именно в первые минуты расширения при температурах более 109 К вещество уже имело "стандартный химический состав" ( около 75% ядер атомов водорода и 25% ядер гелия). Если бы состав вещества был иным, то трудно сказать, какой стала бы дальнейшая химическая эволюция вещества Метагалактики. Образовавшиеся в поздних стадиях расширения Метагалактики звезды оказались не только источниками энергии, но и теми объектами Вселенной, в недрах которых синтезировались необходимые для возникновения жизни химические элементы. Для существования жизни небезразлично и то, что Метагалактика расширяется. Если бы по каким-либо причинам несколько миллиардов лет назад началось сжатие Метагалактики, то постепенное повышение температуры превысило бы значение, при котором возможно существование жизни.

Представление о наличии жизни во Вселенной исторически менялось и всегда интересовало человечество. Взгляды о бесчисленности обитаемых миров получили широчайшее распространение в XVIII—XIX вв. Особую известность и популярность завоевали труды Б. Фонтенеля, К. Фламмариона и др. В эту эпоху населенными считались практически все небесные тела — от Луны и планет до комет и Солнца. Об обитателях Луны, например, писали И. Кеплер, И.Ньютон, а позднее, уже на пороге XIX в., У. Гершель допускал возможность существования жизни на Солнце. Проблема происхождения жизни как предмет научных исследовании возникла во второй половине XIX в. Как отмечал Кельвин, еще Ч.Дарвин совершенно отчетливо ставил вопрос о естественном происхождении жизни на Земле в отдаленном прошлом и говорил об отсутствии условий для этого теперь, при наличии развитой жизни.

В начале XX в., однако, возобладало мнение, что жизнь — привилегия лишь планет типа Земли. А ставшая общепринятой космологическая теория Джинса, согласно которой планеты возникают в результате тесного сближения двух звезд — события очень редкого, привела к заключению о крайней редкости планетных систем и тем более жизни в звездном мире.

В 20-х гг. XX в. существенно изменилась астрономическая картина мира, и в том же десятилетии в трудах А. И. Опарина в СССР и Дж. Холдейна в Англии стала формироваться первая научная концепция происхождения жизни.

Итак, как отмечалось выше, в звездах первого поколения практически не было более тяжелых, чем Н и Не, химических элементов. Но без этих более тяжелых элементов невозможно существование ни земноподобных планет, ни живой материи. Однако эволюция некоторых типов массивных звезд космологически быстро, через какие-нибудь десятки или сотни миллионов лет завершается коллапсом центральной части такой звезды в сверхплотное состояние (белый карлик, нейтронная звезда, черная дыра) и сбросом оболочки, превраща­ющейся в газовую туманность — взрывом сверхновой звезды. При этом и образуются в небольшом количестве (порядка 1% по массе) более тяжелые, чем Н и Не, элементы. Именно эта стадия развития Вселенной и знаменует начало ее химической эволюции. Возможно, заметную роль в обогащении веществ галактик тяжелыми элементами играют и гигантские взрывы в ядрах этих звездных систем.

Солнце в соответствии с расчетами, основанными на современной теории эволюции звезд, образовалось около 5 млрд лет назад (через 8—10 млрд лет после звезд первого поколения) из газопылевой среды, уже обогащенной тяжелыми элементами. П.Дебай, а также В. Г. Фесенков подчеркнули, что у звезд первого поколения, составляющих 90% всех звезд Галактики, не может быть земноподобных планет, а следовательно, и жизни. Однако остальные 10%, составляющие население последующих поколений звезд Галактики (это ~1010 объектов) могут обладать планетами типа Земли. Планеты рождаются в ходе самого процесса звездообразования, и планетные системы могут быть у значительной доли звезд — до 2/3 общего числа звезд второго и последующих поколений могут обладать земноподобными планетами. Это значит, что необходимые для возникновения и развития жизни условия выполняются в галактиках, подобных нашей, не при уникальном сочетании редких событий, а как типичное явление. В пользу справедливости этого вывода свидетельствует медленное (обычно всего несколько км/с на экваторе) вращение большинства солнце-подобных звезд, ибо оно может быть истолковано как свидетельство наличия у них, как и у Солнца, планет, несущих основную (у них 98%) долю вращательного момента количества движения всей системы. Следовательно, образование земноподобных планет — естественный результат общегалактического космогонического процесса.

Коль скоро есть все основания предполагать, что планетных систем, сходных с Солнечной, в Галактике насчитывается несколько миллиардов, вполне естественно принять, что процесс жизни и ее эволюции там в общих чертах по своему характеру сходен с тем, что было на Земле. Разумеется, не на каждой планете возможно зарождение и развитие жизни. Для этого необходимо учесть:

1. Планеты, на которых возможно зарождение и развитие жизни, не могут обращаться вокруг звезды слишком близко или слишком далеко. Необходимо, чтобы температуры их поверхностей были благоприятны для развития жизни. Учитывая, однако, что одновременно со звездой должно образоваться сравнительно большое число планет (скажем ~10), с большой вероятностью можно ожидать, что хотя бы одна или две планеты будут обращаться на расстоянии, при котором температура лежит в нужных пределах.

2. Массы образовавшихся планет не должны быть ни слишком большими, ни слишком маленькими. Это обстоятельство в свое время подчеркивал В. Г. Фесенков. В первом случае гигантские атмосферы этих планет, богатые водородом и его соединениями, исключают возможность развития жизни. Во втором случае за время эволюции атмосферы будут рассеиваться (подобно Меркурию). Однако учитывая сравнительно большое число образующихся планет, можно ожидать, что некотоpoe, пусть малое количество их, будет обладать нужной массой. При этом необходимо, чтобы такие планеты одновременно удовлетворяли первому условию. Заметим, что первое и второе условия не являются независимыми.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.