Рефераты. Панорама современного естествознания

Существенно расширились в XX столетии представления и о структурных уровнях органической природы, которые включают молекулярный уровень жизни, клеточный уровень (микроорганизмов, тканей и органов), уровни целого живого организма, сообществ организмов, биологических видов, биогеоценозов (совокупности видов различных организмов в единстве с природными условиями их существования) и, нако­нец, биосферы в целом, т.е. области распространения жизни на Земле.

Если важнейшими доказательствами единства органического мира в XIX в. стали открытие клеточного строения организмов и эволюционная теория Дарвина, то в XX в. такими доказательствами явились открытия в области молекулярных основ наследственности в живой природе.

Прогресс в биологии еще в первой половине XX в. привел к введению понятий гена (как единицы наследственного материала, ответственного за передачу по наследству определенного признака) и хромосомы (как структурного ядра клетки, обозначаемого ДНК и являющегося высокомолекулярным соединением — носителем наследственных признаков). Расшифровка молекулы ДНК в середине XX в. послужила началом интенсивных исследований в области молекулярной биологии, которые к концу XX в. вплотную подвели к расшифровке генома человека.

II. Атомная энергия в народном хозяйстве


Одной из самых замечательных ядерных реакций является реакция деления. Делением называется реакция расщепления атомного ядра на две примерно равные по массе части (осколки деления). Тяжелые ядра (Z ≥ 90) делятся как самопроизвольно (спонтанное деление), так и принудительно (вынужденное деление). В отличие от спонтанного вынужденное деление происходит практически мгновенно (t < 10-14 с). Для вынужденного деления ядер с Z ≥ 90 достаточно их предварительно слабо возбудить, например, облучая нейтронами с энергией около 1 МэВ. Некоторые ядра, например 235U, делятся даже под действием тепловых нейтронов. Масса (а значит, и энергия) делящегося ядра значительно превышает сумму масс осколков. В связи с этим при делении освобождается очень большая энергия Q = 200 МэВ, значительную часть которой (=170 МэВ) уносят осколки в виде кинетической энергии. Осколки деления имеют большой избыток нейтронов. Поэтому они обладают β-радиоактивными цепочками из продуктов деления, а также испускают мгновенные (2—3 на один акт урана) и запаздывающие (=1% мгновенных) нейтроны.

Большое энерговыделение, испускание нескольких нейтронов, возможность деления при небольшом возбуждении ядра позволяют осуществить цепную реакцию деления. Идея цепной реакции деления заключается в использовании вылетевших в процессе деления нейтронов для деления новых ядер с образованием новых нейтронов деления и т. д. Для нарастания цепного процесса необходимо, чтобы отношение числа нейтронов в двух последовательных положениях (так называемый коэффициент размножения нейтронов К больше единицы (К>1). Значения коэффициента размножения зависит от числа нейтронов, испускаемых в одном акте деления; от вероятности их разных энергиях; от конструкции и размеров реакторной установки. В частности, активная зона реактора (область, где развивается цепная реакция) должна иметь размеры не меньше некоторой критической величины. Цепная реакция, протекающая в уранграфитовом реакторе на тепловых нейтронах при К =1,005, относится к классу медленных управляемых цепных ядерных процессов. Естественный уран не пригоден для осуществления быстрого цепного ядерного процесса взрывного типа на быстрых нейтронах. Такой процесс был осуществлен в 1945 г. на чистом изотопе 235U и на обладающем аналогичными свойствами изотопе 239Рu трансуранового элемента плутония.

Принцип работы атомной бомбы заключается в очень быстром сближении нескольких порций ядерного горючего, общее количество которых после их объединения превосходит по массе и размерам критические значения. Энергетическая и эффективность атомной бомбы примерно в миллион раз повышает эффективность обычной бомбы.

После окончания Второй мировой войны основные усилия ученых-атомщиков были направлены на освоение атомной энергии в мирных целях. В 1954 г. у нас в стране была пущена первая в мире атомная электростанция, в 1957 г. был пущен на воду атомный ледокол. В настоящее время атомная энергия применяется практически во всех областях народного хозяйства и науки и вносит все больший вклад в мировую энергетику. Построено и работает много ядерных реакторов разных типов (на тепловых, промежуточных и быстрых нейтронах) с различными замедлителями (графит, вода, тяжелая вода, бериллий и др.) и совсем без замедлителя (на быстрых нейтронах), с разным ядерным горючим (естественный уран, обогащенный уран, плутоний и др). Они используются и для получения энергии (атомные электростанции, суда и др.), и для различных научных исследований. И хотя Чернобыльская трагедия умерила восторг от успехов атомной энергетики, ее развитие обещает в дальнейшем широкие возможности и электрификации, и теплофикации, и даже химизации. Проблемы надежности работы атомных электростанций и их безаварийности более всего связаны с решением вопросов защиты атомных реакторов от внешних экстремальных воздействий (например, в условиях пожара) и захоронения радиоактивных отходов. Но в ближайшей перспективе по мере развития ядерной энергетики и радиохимии хранилища изотопов, т.е. осколки ядерного деления, могут превратиться в очаги производства ценнейших элементов, в частности, платиноидов. Сегодня изотопы легких платиновых металлов, образующиеся в процессе деления ядер урана и плутония на атомных станциях, доставляют хлопоты: куда бы их подальше спрятать и изолировать. Но радиохимия, изучающая химические свойства и химические превращения радиоактивных веществ, уже ближайшее время должна решить задачу выделения этих ценных металлов и очищения их от радиоактивных примесей.

Один атом гелия легче, чем четыре атома водорода; дефект масс соответствует выделяющейся энергии излучения.

И все-таки современные электростанции нельзя считать верхом достижения атомной энергетики и энергетики вообще, хотя они сегодня вносят около 12% вклада в общий энергетический баланс. Их недостаток — не только в опасности типа Чернобыля, а еще и в том, что они работают, используя в качестве ядерного топлива изотоп 235U, доля которого в природном уране составляет всего-навсего 0,7%. Поэтому развитие атомной энергетики на основе современного поколения АЭС определяется ресурсами урана, которые по энергетическому запасу сравнимы с запасами нефти.

Кроме реакции деления тяжелых ядер, существует еще один способ освобождения внутриядерной энергии — реакция синтеза легких ядер. Величина энерговыделения в процессе синтеза настолько велика, что при большой концентрации взаимодействующих ядер ее может оказаться достаточно для возникновения цепной термоядерной peакции. В этом процессе быстрое тепловое движение ядер поддерживается за счет энергии реакции, а сама реакция — за счет теплового движения. Для достижения необходимой кинетической энергии температура реагирующего вещества должна быть очень высокой (107 — 108 К). При такой температуре вещество находится в состоянии горячей, полностью ионизированной плазмы, состоящей из атомных ядер и электронов. Совершенно новые возможности открываются перед человечеством с осуществлением термоядерной реакции синтеза легких элементов. Можно представить себе три способа осуществления этой реакции:

1)       медленная термоядерная реакция, самопроизвольно происходящая в недрах Солнца и других звезд;

2)       быстрая самоподдерживающая термоядерная реакция неуправляемого характера, происходящая при взрыве водородной бомбы;

3)       управляемая термоядерная реакция.

Неуправляемая термоядерная реакция — это водородная бомба, взрыв которой происходит в результате ядерного взаимодействия:

Д + Д -> Не3 + n; Д + Д -> Т + р; Т + Д -> Не4 + n,

приводящего к синтезу изотопа гелия He3, содержащего в ядре два протона и один нейтрон, и обычного гелия Не4, содержащего в ядре два протона и два нейтрона. Здесь n — это нейтрон, а р — протон, Д — дейтерий и Т — тритий.

При обеих реакциях Д + Д и Д + Т выделяется огромное количество тепла: один грамм газа, "сгорая", образует столько энергии, сколько получается при сгорании примерно 12 т угля! Реакции протекают при температуре 107—1011 К. Поэтому удерживать столь высоко разогретую массу, состоящую из ядер, протонов и нейтронов (она получила название плазмы), невозможно ни в каком котле, изготовленном из сколь угодно жаропрочного материала. Это обстоятельство оказалось главным препятствием на пути осуществления управляемой термоядерной реакции.

Но уже в 1950-х гг. наши отечественные физики первыми выдвинули и экспериментально обосновали принцип магнитной изоляции ядерной плазмы, которая позволяет уменьшить теплопередачу от плазмы к стенкам реактора. Впоследствии была сконструирована установка токамак — тороидальная камера магнитного удержания ядерной плазмы как ступень к решению задачи — управлению термоядерной реакцией. Однако чем дальше углублялись в поиск решения этой задачи, тем больше появлялось новых трудностей. И хотя ученые-физики нашей страны, США, Англии и других государств продвинулись в этом направлении довольно далеко, конечная цель, как они теперь полагают, может быть достигнута не ранее чем через сто лет.

Но существуют и другие препятствия на пути термоядерной энергии, главным из которых является возможный перегрев поверхности Земли в результате выделения тепла термоядерными реакторами. Собственно, речь идет о разумных экологических ограничениях производства термоядерной энергии в пределах не более чем 5% от солнечной энергии, поглощаемой Землей, однако даже и в этих пределах производство термоядерной энергии поднимает разогрев земной поверхности на 3,7°. Считают, что разогрев выше этой предельной температуры может привести к существенному изменению климата всей нашей планеты, даже к всемирному потопу за счет таяния льдов Антарктиды и Гренландии. Так что нужны меры по поиску экологически безупречных и практически неисчерпаемых источников энергии.

Самой рациональной из таких мер является использование солнечной энергии. Эта мера никогда не приведет к перегреву Земли и к загрязнению ее атмосферы, поверхности и океанов. Солнце ежесекундно посылает на Землю 4 трлн кал тепла. Около половины его рассеивается и поглощается атмосферой и около 10% задерживается в капельно-жидких и пылевых облаках. И все же остающаяся доля доходящей до поверхности солнечной энергии оказывается грандиозной, в десятки раз превышающей предельно допустимое производство термоядерной энергии.

Известные в настоящее время способы преобразования солнечной энергии в те виды, которые можно использовать в энергетике, условно делят на четыре типа: теплотехнические, физические, химические и биологические. Сегодня самыми распространенными являются теплотехнические способы. Но они находятся в зависимости от климатических условий, а их КПД при превращении тепловой энергии в электрическую и механическую не превышает 5%. Физические преобразователи солнечной энергии, в основе которых находятся полупроводниковые фотоэлементы, пока не нашли широкого применения. Они используются в космических кораблях. А построенные на базе кремневых фотоэлементов в качестве опытных наземные электростанции выдают энергию, которая примерно в 100 раз дороже электроэнергии, получаемой на атомных станциях.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.