Рефераты. Основные этапы исторического развития естествознания p> К середине XVII в. выдающийся астроном Гевелий изготовил первую карту
Луны. Именно он впервые предложил принятые в настоящее время названия темных пятен Луны — океаны и моря. Гевелию удалось наблюдать девять больших комет, что положило начало их систематическому исследованию.

В конце века Тихо Браге усовершенствовал технику наблюдений и измерений астрономических явлений, достигнув предела возможностей использованного им оборудования. Он также ввел, как отмечалось выше, в практику наблюдения планет во время их движения по небу.

В Новое время, во многом благодаря экспериментальному методу, были объяснены многие довольно простые явления, над которыми человечество задумывалось в течение многих веков, а также были высказаны идеи, определившие научные поиски на века вперед.

. Законы функционирования линз удалось объяснить Кеплеру;

. Проблему «почему вода в насосах не поднимается выше 10,36 м» -

Торричелли сумел связать с давлением атмосферы на дно колодца.

. Правильные объяснения приливов и отливов в морях и океанах, дали

Кеплер (начало рассуждений) и Ньютон.

. Причина цветов тел была установлена Ньютоном. Его теория цветов представляет собой одно из выдающихся достижений оптики, сохранившее значение до настоящего времени. Ньютон также начал разработку эмиссионной и волновой теорий света, современный фундамент которой создал Гюйгенс.

В XVI-XVII вв. наблюдается бурный расцвет анатомических исследований.
В 1543—1544 гг. А. Везалий опубликовал книгу «О строении человеческого тела», которая была прекрасно иллюстрирована и сразу же получила широкое распространение. Она считается первым скрупулезным описанием анатомии из всех известных человечеству. Но это было, если так можно выразиться, развитием статических представлений о человеческом теле.

У. Гарвей (1578—1657) продвинул дело гораздо дальше, начав развитие биологических аспектов механистической философии. Он заложил основы экспериментальной физиологии и правильно понял основную схему циркуляции крови в организме. Гарвей воспринимал сердце как насос, вены и артерии — как трубы. Кровь он рассматривал как движущуюся под давлением жидкость, а работу венозных клапанов уподоблял клапанам механическим. В спорах со своими коллегами Гарвей утверждал, что «никакого жизненного духа» (эфирного тела) ни в каких частях организма не обнаружено.

Глава 3. РЕВОЛЮЦИИ В ЕСТЕСТВОЗНАНИИ

В истории естествознания процесс накопления знаний сменялся периодами научных революций, когда происходила ломка старых представлений и взамен их возникали новые теории.

Крупные научные революции связаны с такими достижения человеческой мысли, как:

V учение о гелиоцентрической системе мира Н. Коперника,

V создание классической механики И. Ньютоном,

V ряд фундаментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволюционного развития природы и установившие тесную взаимосвязь многих явлений природы,

V крупные открытия в начале XX столетия в области микромира, создание квантовой механики и теории относительности.

Рассмотрим эти основные достижения.

( Польский астроном Н. Коперник в труде «Об обращении небесных сфер» предложил гелиоцентрическую картину мира вместо прежней птолемеевой
(геоцентрической). Она явилась продолжением космологических идей
Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н.
Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является естественным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы.

«Трудно переоценить значение и влияние гелиоцентрической картины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса»[8].

( Сравнимые по масштабу перемены в теоретической физике произошли в
XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эффективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразующей мир. К тому же она определенным образом формировала мировоззрение ученых. Вступала в силу механистическая картина мира.

( Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео
Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени.

Однако его научные результаты разнообразны и глубоки. Он исследовал свободное падение тел и установил, что скорость свободного падения тел не зависит от их массы (в отличие от Аристотеля) и траектория брошенного тела представляет собой параболу. Известны его астрономические наблюдения
Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической картины мира, утверждению которой способствовали передовые ученые того времени.

( Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропорционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один закон, предложенный Ньютоном, закон всемирного тяготения, звучит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы.

«Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и расстояниями между ними и, таким образом, является идеализацией реального физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины мира. Его теория использовала строгий математический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ»[9].

Благодаря трудам Галилея и Ньютона XVIII век считается началом того длительного периода времени, когда господствовало механистическое мировоззрение.

( Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем:

. Г. Мендель (1822-1884) открыл законы наследственности, скрещивая семена гороха в течение восьми лет.

. Исследуя бактерии, Л. Пастер показал, что они присутствуют в атмосфере, распространяются капельным путем и их можно разрушить высокой температурой. В XIX в. микробиология помогала побеждать инфекционные болезни.

. Итогом развития эволюционной концепции стала работа Ч. Дарвина (1809—

1882) «Происхождение видов путем естественного отбора» (1859). Эта теория имела такое же влияние на умы людей, какое в свое время имела теория Коперника. Это была научная революция в области биологии. Можно сказать, что коперниковская революция указала место человека в пространстве, а теория Дарвина определила место человека во временной шкале мира.

( Следующая научная революция, после которой резко изменилась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых экспериментальных фактов, которые не могли быть описаны в рамках старых теорий, как это обычно бывает в науке. К таким фактам относятся прежде всего:

V исследования Фарадея по электрическим явлениям,

V работы Максвелла и Герца по электродинамике,

V изучение явления радиоактивности Беккерелем,

V открытие первой элементарной частицы (электрона) Томсоном и т.д.

Проникая в область микромира, физики столкнулись с неожиданными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и главным образом
Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана квантовая механика. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопределенностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот.

( В 1905 г. А. Эйнштейн создал специальную теорию относительности, в которой свойства пространства и времени связаны с материей и вне материи теряют смысл. Эта теория дает преобразование пространственных и временных координат тел, которые двигаются со скоростями, сравнимыми со скоростью света. Вторая часть теории, которая называется общей теорией относительности, связывает присутствие больших гравитационных полей (или массы) с искривлением пространства. Эта часть теории используется в космологических моделях.

ЗАКЛЮЧЕНИЕ

Итак, историческое развитие человечества постоянно сопровождалось развитием науки.

Ученые, внесшие свой вклад в развитие науки, были яркими личностями - они сочетали в себе профессиональные качества в своей области с высокой культурой духа. Новые теории строились на основе не только строгого разума, но и высокой степени интуиции.

С тех пор прошло уже много времени. Современная наука быстро прогрессирует и научные открытия совершаются на наших глазах. Современное естествознание представляет собой сложную, разветвленную систему множества наук. Ведущими науками XX в. по праву можно считать физику, биологию, науки о космосе, прикладную математику (неразрывно связанную с вычислительной техникой и компьютеризацией), кибернетику, синергетику.

Но не только последние научные данные можно считать современными, а все те, которые входят в толщу современной науки, образуя ее краеугольные камни, поскольку наука не состоит из отдельных, мало связанных между собой теорий, а представляет собой во многом единое целое, состоящее из разновременных по своему происхождению частей.

Список использованной литературы.

1. Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998.
2. Пуанкаре А. О науке. – М., 1983.
3. Горелов А.А. Концепция современного естествознания. - М.: ЦЕНТР, 2000.
4. Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000.
5. Кун Т. Структура научных революций. - М., 1975.
6. Селье Г. От мечты к открытию. – М., 1987.
7. Кокин А.В. Концепции современного естествознания. – М.: «ПРИОР», 1998.
8. Мотылева Л.С. и др. Концепции современного естествознания. — Спб.: Союз,

2000.
9. Концепции современного естествознания /Под ред. В.Н. Лавриненко, В.П.

Ратникова. — М.: ЮНИТИ-ДАНА, 2000.

-----------------------
[1] Пуанкаре А. О науке. – М., 1983 г.
[2] Горелов А.А. Концепция современного естествознания. - М.: ЦЕНТР, 2000 г., с. 10.
[3] Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998 г., с. 25.
[4] Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998 г., с. 27
[5] Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000. —с. 35
[6] Кун Т. Структура научных революций. - М., 1975 г., с. 65.
[7]Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000. — с. 39.
[8] Кун Т. Структура научных революций. - М., 1975 г., с. 66.
[9] Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания: Учебн. пособие для вузов. — М.: Аспект Пресс, 2000. — с.
44.



Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.