Рефераты. История, панорама современного естествознанияи тенденции его развития

Галилей расчистил путь для творцов классической и современной физики, и его бессмертные творения будут всегда служить примером того, как гениально он "всю жизнь читал открытую для всех великую книгу природы".

Факел научного знания, зажженный Галилеем, подхватил И. Ньютон. В его трудах и открытиях дело жизни итальянского ученого нашло свое блестящее завершение.

И. Ньютон и создание фундамента классической физики

Результаты естествознания XVI-XVII вв. обобщил Исаак Ньютон (1643-1727). Именно он завершил постройку фундамента нового классического естествознания.

Первые научные работы Ньютона относятся к оптике. В 1666 г., пропуская свет через трехгранную стеклянную призму, он обнаружил его сложный состав, разложив на семь цветов (в спектр), т.е. открыл явление дисперсии. Кроме того, обнаружив хроматическую аберрацию у линз и считая ее неустранимой, Ньютон пришел к выводу, что линзы в телескопе надо заменить сферическими зеркалами. В своих работах по оптике Ньютон поставил очень важный и сложный вопрос: "Не являются ли лучи света очень мелкими частицами, испускаемыми светящимися телами? ". Последователи Ньютона ответили на этот вопрос утвердительно и однозначно, и гипотеза истечения, подкрепленная авторитетом Ньютона, стала господствующей в оптике XVIII в., несмотря на возражения против нее Ломоносова, Эйлера и других ученых, несмотря на успехи волновой теории Гюйгенса.

Очень интересна также мысль Ньютона о возможном превращении тел в свет и обратно. "Превращение тел в свет и света в тела соответствуют ходу природы, которая как бы услаждается превращениями", - говорил Ньютон. И действительно, в 1933-1934 гг. были открыты факты превращения заряженных частиц электрона и позитрона в свет и обратно. Так Ньютон предугадал одно из далеких будущих открытий атомной физики.

1687 год вошел навсегда в историю физики как год выхода в свет выдающегося труда профессора Кэмбриджского университета Исаака Ньютона "Математические начала натуральной философии" (иногда его называют   "Математическими   основами   естествознания"   и   даже   просто "Началами"). Однако многие тогда не поняли значения этого события для науки. Достаточно сказать, что некоторые из профессоров университета, по словам секретаря Ньютона, получив экземпляр "Начал" и перелистав его страницы, хмуро заявляли, что надо лет семь еще учиться, прежде чем что-нибудь понять в этой книге.

"Начала" - вершина научного творчества Ньютона - состоят из трех частей: во- первых двух речь идет о движении тел, последняя часть посвящена системе мира.

Приведем формулировку законов Ньютон в русском переводе сделанном академиком А. Н. Крыловым.

I.       Всякое тело продолжает удерживаться в состоянии покоя или
равномерного прямолинейного движения, пока и поскольку оно не
понуждается приложенными силами изменить это состояние.

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Действию всегда есть равное и противоположное противодействие, иначе, - взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.

Четвертым законом, который Ньютон формулирует в своих "Началах", был закон всемирного тяготения.

Во второй части Ньютон рассмотрел силы сопротивления среды при движении в ней тел, гидро- и аэростатику, законы волнового движения, простейшие случаи вихревых движений.

В третьей книге ученый изложил общую систему мира и небесную механику, в частности, теорию сжатия Земли у полюсов, теорию приливов и отливов, движение комет, возмущения в движении планет и т. д. Рассматривая все эти явления, Ньютон везде находит подтверждение своего закона тяготения.

"Начала" Ньютона знаменовали новую эру в развитии науки. Они явились прочным фундаментом, на котором успешно строилась физика XVIII-XIX вв., получившая название классической. Книга подводила итог всему сделанному за предшествующие тысячелетия в учении о простейших формах движения материи.

В работах Ньютона раскрывается его мировоззрение и методология исследований. Ньютон был стихийным материалистом. Он был убежден в объективном существовании материи, пространства и времени, в существовании объективных законов мира, доступных человеческому познанию. Своим стремлением свести все к механике Ньютон поддерживал механистический материализм (механицизм).

Свой метод познания, названный впоследствии методом принципов, Ньютон изложил в "Правилах философствования". Этих правил четыре.

Не принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений.

Одинаковым явлениям необходимо приписывать одинаковые причины.

3. Независимые и неизменные при экспериментах свойства тел, подвергнутых исследованию, надо принимать за общие свойства материальных тел.

4. Законы, индуктивно найденные из опыта, нужно считать верными, пока им не противоречат другие наблюдения.

Нельзя не сказать о математических достижениях Ньютона, без которых не было бы и его гениальной теории тяготения. Свой метод расчёта механических движений на основе бесконечно малых приращений величин - характеристик исследуемых движений - Ньютон назвал "методом флюксий" и описал его в сочинении "Метод флюксий и бесконечных рядов с приложением его к геометрии кривых" (закончено в 1671 г., полностью опубликовано в 1736 г.). Вместе с методом Г. Лейбница он составил основу дифференциального и интегрального исчислений. В математике Ньютону принадлежат также важнейшие труды по алгебре, аналитической и проективной геометрии и др.

Глава 7. Естествознание XVIII в.


В XVIII в. в механику проникают методы дифференциального и интегрального исчислений, и она становится аналитической.

Огромная заслуга в развитии механики принадлежала петербургскому академику Леонарду Эйлеру (1707-1783) и парижскому академику Жозефу Луи Лагранжу (1736-1813). "Mexaника" Эйлера появилась в 1736 г. в Петербурге в 2 томах. Eго же "Теория движения твердого тела", рассматриваемая как 3-й том "Механики", вышла в 1765 г. Эйлер определяет механику как науку о движении, изложенную аналитически (методами анализа), "благодаря чему только и можно достигнуть полного понимания вещей".

Эйлер переформулировал основные понятия ньютоновской механики, придав им современную форму, но сохранив сущность по Ньютону. Именно Эйлер впервые записал второй закон динамики в аналитической форме, сделав его основным законом всей механики. В "Теории движения твердого тела" он развил механику вращательного движения.

Эйлер своим гением охватывал все разделы математики. Прекрасные работы выполнены им в области математической физики и гидродинамики. Он написал учебники по арифметике и элементарной алгебре, введению в математический анализ и аналитической геометрии. Его система изложения тригонометрии дошла до нас почти в неизменном виде. Много работ Эйлера посвящено и чисто прикладным наукам. Двухтомная "Морская наука" сыграла колоссальнейшую роль в развитии кораблестроения и кораблевождения в XVIII в. Его "Теория движения Луны" и составленные на ее основе таблицы, сотни лет использовались мореплавателями. На основе его трехтомной "Диоптрики" создавались улучшенные конструкции телескопов и микроскопов.

XVIII век в области механики характеризуется также поисками более общих принципов, чем законы Ньютона. В этот период создается теоретическая механика. Наибольший вклад в ее развитие внес Лагранж.

Главная работа Лагранжа "Аналитическая механика" вышла в Париже в 1788 г. В ней была решена задача, которую он сам формулировал так: "Я поставил цель свести теорию механики и методы решения связанных с нею задач к общим формулам, простое развитие которых дает все уравнения для решения каждой задачи". "Аналитическая механика" Лагранжа состоит из двух частей: статики и динамики. Ирландский математик У. Гамильтон (1805-1865), оценивая вклад Лагранжа в развитие механики, писал, что "из числа последователей этих блестящих ученых (имелись в виду Галилей и Ньютон) Лагранж, пожалуй, больше, чем кто-либо другой, сделал для расширения и придания стройности всей механике. При этом красота метода настолько соответствует достоинству результата, что эта великая работа превращается в своего рода математическую поэму".

Одним из прикладных разделов оптики, получивших развитие в XVIII в., была фотометрия. Этого требовали практические нужды освещения (многие ученые занимались вопросами освещения дворцов и улиц городов). Основоположниками фотометрии являются П. Бугер (1698-1758) и И. Ламберт (1728-1777). Работа Бугера "Опыт о градации света" вышла в 1729 г., "Фотометрия" Ламберта - в 1760 г. Именно в этих работах были введены основные фотометрические понятия: световой поток, сила света, освещенность, яркость. Главным методом фотометрии был метод сравнения освещенностей. Бугер сконструировал фотометр и открыл закон поглощения света.

Учение об электричестве и магнетизме в XVIII в. получило дальнейшее развитие. В этот период закладываются основы электростатики. Большой вклад в развитие этих разделов физики внесли Франклин, Рихман, Ломоносов, Эпинус, Кулон.

Георг Рихман, профессор Петербургской академии наук, изучал электрические явления с 1745 г. Он пытался измерить электричество с помощью весов и изобрел прибор для сравнения электрических сил. С по­мощью изобретенного указателя электричества Рихман предсказал существование электрического поля вокруг заряженного тела.

В 1759 г. вышла работа петербургского академика Эпинуса (1724-1802) "Опыт теории электричества и магнетизма", где ученый ищет не отличия, а сходства между электричеством и магнетизмом. Эпинус считал, что по аналогии с законом тяготения сила взаимодействия зарядов обратно пропорциональна квадрату расстояния между ними.

Закон взаимодействия электрических зарядов был заново открыт в 1784 г. французским военным инженером, членом Парижской академии наук Ш. Кулоном (1736-1806) с помощью сконструированных им крутильных весов и по праву носит его имя. Только с открытием этого закона учение об элект­ричестве было поставлено на количественную основу.

Наука о теплоте в XVIII в. делает лишь первые шаги.  Одним из ее разделов была термометрия, возникшая в первой четверти века. Именно в этот период создаются термометры с двумя опорными точками. Большой вклад в развитие этой отрасли науки внесли Амонтон, Фаренгейт, Реомюр, Цельсий и другие ученые.

В XVIII в. создаются первые теории теплоты. Одна из них рассматривала теплоту как особую невесомую жидкость - теплород; другая, сторонником который был М. В. Ломоносов, утверждала, что теплота - это особый род движения "нечувствительных частиц". Ломоносов считал, что теплота обусловлена вращательным движением корпускул (молекул). Поскольку нет верхнего предела скорости движения частиц, то нет, по Ломоносову, и верхнего предела температуры. Но должна существовать "наибольшая и последняя степень холода", которая состоит "в полном прекращении вращательного движения частиц". Эти мысли были изложены Ломоносовым в работе "Размышления о причине теплоты и холода", опубли­кованной в 1750 г. и явившейся одной из основополагающих работ по кинетической теории тепла.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.