Рефераты. Характеристики средств измерений

Рассматривая рис. 1.1, следует остановиться на следующих главных моментах.


Измеряемая величина — это подлежащая измерению физическая величина, например: ускорение, перемещение, сила, расход, уровень, положение, давление, механическое напряжение, температура, скорость и т. п. В некоторых случаях измеряемой может быть и электрическая, величина, такая, как ток, напряжение или частота, которая преобразуется в электрический сигнал, пригодный для использования в других частях системы. При, этом измерительный преобразователь является электрическим преобразующим элементом.

Входной преобразователь, преобразующий измеряемую величину в электрический сигнал, — это прибор, пригодный для использования в других частях системы. Правда, хотя входные преобразователи генерируют электрический выход, существуют, однако, среди них и такие, которые имеют другую природу выходного сигнала, например давление воздуха, но таких преобразователей немного и они здесь не рассматриваются. Преобразователи с неэлектрическим выходом применяются в качестве чувствительных элементов измерительных преобразователей или служат для превращения неэлектрического сигнала в электрический. Все функции преобразователей являются аналоговыми, поэтому в общем случае (за некоторыми исключениями) их сигналы также аналоговые.

Линии связи — это линии между входным преобразователем и другой частью системы. Таких линий в строгом смысле может иногда и не быть, если, скажем, входной преобразователь размещается в нескольких сантиметрах от другой части системы. Если же он располагается на другом расстоянии от системы, то должны быть предприняты шаги к тому, чтобы линии связи не влияли либо слабо влияли на эффективность работы системы.

Там, где в системе имеются существенные линии связи, требуется один или 6oлee каскадов сопряжения сигналов, чтобы малый выходной сигнал входного преобразователя усилить, подвергнуть аналого-цифровому преобразованию, фильтрации, модуляции и т. п. Это необходимо для того, чтобы информация, выдаваемая первичным преобразователем, не терялась при передаче ее к другим частям системы. Такие каскады могут включать в себя и схемы обработки сигнала, в которых содержащиеся в сигнале входного преобразователя данные подвергаются цифровой обработке, а результирующий сигнал или результаты вычислений могут быть отображены на дисплее, запомнены или использованы в целях управления. Сопряжение сигналов может осуществляться в нескольких точках системы.

В некоторых случаях довольно сложно сделать заключение о том, где в системе аналоговые сигналы преобразователей становятся данными. Поэтому часто невозможно различать каскады формирования аналогового сигнала и обработки данных. К. счастью, это различие является довольно значительным.

Отображающие или запоминающие приборы — это приборы, которые индицируют текущее значение измеряемой величины для удобства работы оператора системы или запоминают соответствующую информацию для ее последующего использования.

В случае управляющей системы (рис. 1.1, б) применяются некоторые виды компарирующих приборов, предназначенных для сравнения обрабатываемых данных с некоторыми опорными значениями и получения разностного сигнала.

Работающий по разностному сигналу выходной преобразователь используется для управления измеряемой величиной.

Безусловно, приведенные на рис. 1.1 примеры систем содержат не все типы каскадов формирования и обработки сигналов и не отражают всех режимов работы контрольно-измерительных и управляющих систем.

Вообще говоря, принципы работы входных и выходных преобразователей довольно просты. Конечно, режимы их работы существенно отличаются друг от друга -входные преобразователи обычно используются для преобразования изменений измеряемой величины в слабый электрический сигнал, а выходные преобразователи преобразуют мощный сигнал в сильное перемещение. По этой причине следует рассматривать два различных типа приборов. В докладе речь идет о входных преобразователях, которые являются воспринимающими элементами электронных систем.

Структурная схема любого преобразователя

Любой преобразователь можно рассматривать как устройство, структурная схема которого представлена на рис. 1.4. Здесь чувствительный элемент воспринимает змеряемое свойство объекта и преобразует его в другую физическую величину. Затем преобразующий элемент преобразует эту физическую величину в электрический сигнал, значение которого отражает уровень измеряемого свойства объекта. Другими возможными частями измерительного преобразователя являются схемы формирования сигнала и питания.


 

Рис. 1.4. Структурная схема измерительного преобразователя, включающая в себя элементы, общие для всех типов преобразователей. Показанные в пунктирных линиях элементы могут в некоторых преобразователях отсутствовать


Чувствительный элемент преобразует измеряемую часть физической величины в такую физическую величину, которая может быть воспринята и измерена преобразующим элементом. С этой точки зрения и сам чувствительный элемент можно рассматривать, строго говоря, как преобразователь.

Пьезоэлектрические преобразователи

Прямой пьезоэлектрический эффект.

В кристаллических диэлектриках различно заряженные ионы располагаются в определенном порядке, образуя кристаллическую решетку. Поскольку разноименно заряженные ионы чередуются и расположены так, что их заряды взаимно компенсируются, в целом кристалл электрически нейтрален. Электрическая структура кристалла, симметричного относительно оси или плоскости, схематически показана на рисунке 2.1.


Рисунок 2.1 - Электрическая структура кристалла диэлектрика, симметричного относительно оси (плоскости)


В направлении оси X ионы различных знаков чередуются и взаимно компенсируют свои заряды. При действии на кристалл силы Fх в направлении X кристаллическая решетка деформируется, расстояния между положительными и отрицательными ионами изменяются, и кристалл электризуется в этом направлении. На его гранях, перпендикулярных оси X, появляется заряд:


q=d11Fx  (2.1)


пропорциональный силе Fx. Коэффициент d11, зависящий от вещества и его состояния, называется пьезоэлектрическим модулем. Индексы при коэффициенте d определяются ориентацией силы и грани, на которой появляется заряд, относительно кристаллических осей. При изменении ориентации пьезоэлектрический модуль изменяется. Электризация кристалла под действием внешних сил называется прямым пьезоэффектом. Вещества, обладающие пьезоэффектом, называются пьезоэлектриками. Для изготовления измерительных преобразователей наибольшее применение нашли естественные кристаллы кварца и искусственные пьезоэлектрические материалы - пьезокерамики.

Кварц (SiO2). Призматическая часть кристалла кварца и расположение кристаллических осей показаны на рисунке 2.2.


Х- электрическая ось; V- механическая ось; 2- оптическая ось

Рисунок 2.2 - Кристалл кварт

Ось X - электрическая, ось Y - механическая, ось Z - оптическая. Для использования в измерительных преобразователях из кристалла вырезается пластинка. При действии на пластинку сил вдоль осей X или Y происходит поляризация кристалла. На гранях, перпендикулярных оси X, появляются заряды:


q = d11 Fx или q = d11(Qx- Qy)Fy (2.2)


где Fx и Fy - соответствующие силы; Qx и Qy площади граней, перпендикулярных осям X и Y; d11=d12=2,31*10-12 К/Н - пьезоэлектрические модули.Возникновение заряда под действием силы Fx называется продольным пьезоэффектом, возникновение заряда под действием Fy -поперечным пьезоэффектом. Действие силы Fz вдоль оси Z не вызывает никаких электрических зарядов.


Е пьезо-ЭДС на электродах пьезоэлемента; С- собственная емкость пьезоэлемента; С1- суммарная емкость кабеля я входа усилителя; R- входное сопротивление усилителя

Рисунок 2.3 - Упрощенная эквивалентная схема пьезоэлектрического преобразователя, соединенного с вольтметром


Кварцевая пластинка имеет высокую прочность. Допустимые напряжения могут доходить до (0,7- 1) 108 Н/м2, что позволяет прикладывать к ней большие измеряемые силы. Она имеет большой модуль упругости, что обусловливает ее высокую жесткость и очень малое собственное внутреннее трение. Последнее обстоятельство определяет высокую добротность изготовленных из кварца пластинок. Кварцевые пластинки используются для изготовления преобразователей, измеряющих давление и силу.

Кварц - материал с высокой твердостью, он трудно обрабатывается и может применяться для изготовления пластинок лишь простой формы.

Пьезоэлектрический модуль d практически постоянен до температуры 200 °С, а затем с увеличением температуры немного уменьшается. Предельная рабочая температура составляет 600° С. При температуре 573° С (температура Кюри) кварц теряет пьезоэлектрические свойства. Относительная диэлектрическая проницаемость равна 4,5 и несколько увеличивается с увеличением температуры. Удельное объемное сопротивление кварца превышает 1012 Ом.

Электрические и механические свойства кварца имеют высокую стабильность. За 10 лет изменение характеристик не превосходит 0.05%.

Пьезоэлектрическая керамика. Пьезокерамика имеет доменное строение, причем домены поляризованы. При отсутствии внешнего электрического поля поляризация отдельных доменов имеет хаотическое направление, и на поверхности наготовленного из пьезокерамики тела электрический заряд отсутствует. В электрическом поле домены ориентируются в направлении этого поля, вещество поляризуется и на поверхности тела появляются заряды. При снятии поля домены сохраняют свою ориентацию, вещество остается поляризованным, но поверхностный заряд с течением времени стекает. Если к телу, изготовленному из пьезокерамики, после обработки его в электрическом поле приложить механическую нагрузку, то под ее действием домены изменяют свою ориентацию и изменяется поляризация вещества. Изменение поляризации вызывает появление заряда на поверхности тела. Тело, изготовленное из поляризованной керамики, при воздействии механической силы электризуется так же, как и естественные пьезоэлектрические монокристаллы.

Типичной пьезоэлектрической керамикой является титанат бария ВаTiO3. Его пьезоэлектрический модуль лежит в пределах d31=(4,35-8,35)10-11 К/Н; диэлектрическая проницаемость - в пределах εr - 1100 - 1800; тангенс угла диэлектрических потерь, характеризующий внутреннее удельное сопротивление, - в пределах tgα- 0,3 - 3 %. Зависимость возникающего заряда от приложенной силы имеет некоторые нелинейность и гистерезиc. Свойства пьезокерамики зависят также от их технологии и поляризующего напряжения.

Большинство пьезокерамик обладает достаточной температурной стабильностью. Пьезоэлектрические свойства сохраняются вплоть до температуры Кюри. Для титаната бария она равна 115°С. С течением времени параметры пьезокерамики самопроизвольно изменяются. Старение обусловливается изменением ориентации доменов.

Изготовление преобразователей из пьезокерамики значительно проще, чем из монокристаллов. Керамические изделия делаются по технологии, обычной для радиокерамических изделий (путем прессования или литья под давлением), на керамику наносятся электроды, к электродам привариваются выводные провода. Отличие заключается в электрической обработке. Для поляризации изделие помещается в электрическое поле напряженностью 105 - 106 В/м.

Принцип действия пьезоэлектрического преобразователя

Действие пьезоэлектрического преобразователя основано на прямом пьезоэффекте. Обычно он представляет собой пластинку, наготовленную из пьезоэлектрического материала, на которой имеются два изолированных друг от друга электрода.

В зависимости от вещества формы преобразователя и ориентации кристаллических осей входной величиной могут быть как силы, производящие деформацию сжатия-растяжения, так и силы, производящие деформацию сдвига. Последний вид деформации может использоваться в преобразователях, имеющих в качестве входной величины момент силы.

Выходной величиной преобразователя является напряжение на электродах: E = q / C (2.3)

где q - пьезоэлектрический заряд; С - емкость, образованная электродами.

Подставляя формулу для вычисления заряда в данную формулу, получим функцию преобразования пьезоэлектрического преобразователя:


E=d F / C (2.4)


Если преобразователь имеет форму плоской пластины, то функция преобразования:


E = d δ F(εr ε0 Q) (2.5)


где εr - относительная диэлектрическая проницаемость пьезоэлектрического вещества; Q - площадь электродов; δ - расстояние между электродами (толщина пластины).

ЭДС, возникающая на электродах преобразователя, довольно значительна - единицы вольт. Однако если сила постоянна, то измерить ЭДС трудно, поскольку заряд мал и быстро стекает через входное сопротивление вольтметра. Если же сила переменна, то образуется переменная ЭДС, измерить которую значительно проще. Если при этом период изменения силы много меньше постоянной времени, определяемой емкостью преобразователя и сопротивлением утечки заряда, то процесс утечки не влияет на выходное напряжение преобразователя. При синусоидальном законе изменения силы ЭДС изменяется также синусоидально и измерение переменной силы сводится к измерению временной ЭДС или напряжения.

Схема включения.

Пьезоэлектрический преобразователь является генераторным преобразователем, вырабатывающим ЭДС, Для преобразования её в приборе имеется вторичный преобразователь, в качестве которого может служить вольтметр переменного тока, проградуированный в единицах измеряемой величины. Поскольку вольтметр должен иметь большое входное сопротивление, используются электронные вольтметры.

Упрощенная эквивалентная схема пьезоэлектрического преобразователя, соединенного кабелем с вольтметром, представлена на рисунке 2.3а. На этой схеме С - собственная емкость преобразователя; С1 - суммарная емкость соединительного кабеля, входной емкости усилителя и других емкостей, шунтирующих вход усилителя; R -входное сопротивление усилителя. Сопротивления утечки пьезоэлемента и сопротивление утечки кабеля могут рассматриваться на эквивалентной схеме как составляющие сопротивления R.

Входным напряжением усилителя является падение напряжения на сопротивлении R. Если на преобразователь действует синусоидальная сила, то, используя символический метод, можно определить комплексную чувствительность или комплексный коэффициент передачи:


К(jw)=U/E= (C/(C+C1))(jwτ/(1+jwτ)) (2.6)


где τ=R(C+C1) - постоянная времени.

Модуль чувствительности; или просто чувствительность, схемы:


S(w)==[C/(C+C1)][wτ(1+w2τ2)-1/2] (2.7)


Это выражение показывает зависимость чувствительности от частоты и является частотной характеристикой преобразователя, подключенного к усилителю. График частотной характеристики показан на рисунке 2.3 б. Частотная характеристика может быть представлена в виде двух сомножителей:

S (w) = S() Sн (w) (2.8)


Первый из них представляет собой чувствительность при очень больших частотах и не зависит от частоты, т.к. при w:


S(w) C/(C+C1)  (2.9)


Второй сомножитель Sн(w)= wτ(1+w2τ2)-1/2 определяет нормированную характеристику. Он показывает чувствительности при изменении частоты.

Из формулы для модуля чувствительности видно, что S=0, при w=0, т.е. пьезоэлектрические преобразователи неприменимы для измерения статических напряжений.

Полученные выражения справедливы на средних и низких частотах, т.е. в тех случаях, когда внутреннее сопротивление пьезоэлемента можно заменить эквивалентной емкостью.

Пьезоэлемент обладает некоторой упругостью и массой и является колебательной системой. Резонансные свойства этой системы проявляются на высоких частотах. Резонанс приводит к повышению чувствительности на высоких частотах. При еще большем увеличении частоты чувствительность падает.

Погрешность пьезоэлектрического преобразователя. Рабочей областью частот является область, в которой чувствительность остается постоянной. Сверху эта область ограничена резонансом пьезоэлемента. Снизу она определяется постоянной времени τ.

Для улучшения частотных свойств в области нижних частот нужно увеличивать τ=R(C+C1). Для усиления выходного напряжения пьезоэлектрического преобразователя применяют усилители с максимально возможным входным сопротивлением (не менее 1011 Ом).

Дальнейшее увеличение постоянной времени может происходить при увеличении Сl; для этого вход усилителя шунтируется дополнительным конденсатором. Однако включение этого конденсатора уменьшает чувствительность при больших частотах и требует увеличения коэффициента усиления усилителя. В схеме, рассмотренной выше, постоянная времени обычно не превышает 1 с. Использование операционных усилителей с обратными связями позволяет создавать приборы, у которых постоянная времени достигает значений 10-100 с.

Верхняя частота рабочего диапазона определяется увеличением чувствительности вследствие механического резонанса. Она довольно высока. Имеются преобразователи с верхней частотой рабочего диапазона 80 кГц.

В измерительной цепи внешними электромагнитными полями может наводиться паразитная ЭДС. Эта переменная ЭДС создает погрешность. Для защиты от полей измерительная цепь экранируется и датчик соединяется с вторичным преобразователем с помощью экранированного кабеля. Однако нестабильность параметров кабеля, например изменение его емкости, обусловленное изгибом, вызывает изменение чувствительности в соответствии с формулой (2.9) и вносит погрешность.

При изгибах кабеля он может расслаиваться. На расслоенных поверхностях вследствие трения образуются электрические заряды. Перемещение заряженных поверхностей под действием вибрации кафеля приводит к появлению некоторой переменной ЭДС. Погрешность, обусловленная вибрацией кабеля, может быть значительно уменьшена применением специальных антивибрационных кабелей.

Нестабильность измерительной цепи может быть вызвана повышением влажности воздуха или резким изменением его температуры. При этом происходит увлажнение изоляции, что приводит к уменьшению сопротивления R в эквивалентной схеме рисунка 2.3а. Изменение R вызывает изменение чувствительности и дополнительную частотную погрешность.

Изменение температуры пьезоэлемента вызывает также изменение его пьезоэлектрического модуля и чувствительности. Наиболее стабильным пьезоэлектрическим материалом является кварц.

Погрешность преобразователя может быть вызвана также несовершенством пьезоэлектрических материалов: гистерезисом характеристики и ее нелинейностью.

Если в преобразователе действуют силы, перпендикулярные оси чувствительности пьезоэлемента, то возможна погрешность, обусловленная поперечным пьезоэффектом.

Принцип работы устройства Преобразователь ПСА-02 представляет собой электромеханический преобразователь, в котором в качестве чувствительного элемента применен диск из пьезокерамического материала ЦТС-19. Колебания стенки артерии воспринимаются пелотом и преобразуются в изменения давления воздуха в полости преобразователя, которые в свою очередь преобразуются с помощью пьезоэлемента в электрический сигнал. Согласование чувствительного элемента с вторичным прибором по сопротивлению выполняется с помощью согласующего усилителя.

Электрическая принципиальная схема преобразователя представлена на рисунке 2.4.


Рисунок 2.4 – Схема электрическая принципиальная преобразователя ПСА-02.

Микросхема D1 служит для предварительного усиления сигнала чувствительного элемента В1 и согласования его выходного сопротивления и вторичного прибора. Величина входного сопротивления согласующего усилителя задается значением сопротивления R1.

Переменное сопротивление R3 определяет коэффициент передачи усилителя. Розетка X1 служит для соединения преобразователя с вторичным прибором. Переменное сопротивление R4 служит для балансировки схемы усилителя.


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.