Рефераты. Виртуальная память в Microsoft Windows

Раздел для кода и данных режима ядра (Windows 2000 и Windows 98)

В этот раздел помещается код операционной системы, в том числе драйверы устройств и код низкоуровневого управления потоками, памятью, файловой системой, сетевой поддержкой. Все, что находится здесь, доступно любому процессу. В Windows 2000 эти компоненты полностью защищены. Поток, который попытается обратиться по одному из адресов памяти в этом разделе, вызовет нарушение доступа, а это приведет к тому, что система в конечном счете просто закроет его приложение. 64-разрядной Windows 2000 раздел пользовательского режима (4 Тб) выглядит непропорционально малым по сравнению с 16 777 212 Тб, отведенными под раздел для кода и данных режима ядра. Дело не в том, что ядру так уж необходимо все это виртуальное пространство, a просто 64-разрядное адресное пространство настолько огромно, что его большая часть не задействована. Система разрешает нашим программам использовать 4 Тб, а ядру — столько, сколько ему нужно. К счастью, какие-либо внутренние структуры данных для управления незадействованными частями раздела для кода и данных режима ядра не требуются.

Регионы в адресном пространстве

Адресное пространство, выделяемое процессу в момент создания, практически все свободно (незарезервировано). Поэтому, чтобы воспользоваться какой-нибудь его частью, нужно выделить в нем определенные регионы через функцию WirtualAlloc.Операция выделения региона называется резервированием (reserving). При резервировании система обязательно выравнивает начало региона с учетом так называемой гранулярности выделения памяти (allocation granularity). Последняя величина в принципе зависит от типа процессора, но для процессоров, рассматриваемых в книге (x86, 32- и 64-разрядных Alpha и IA-64), — она одинакова и составляет 64 Кб.Резервируя регион в адресном пространстве, система обеспечивает еще и кратность размера региона размеру страницы. Так называется единица объема памяти, используемая системой при управлении памятью. Как и гранулярность выделения ресурсов, размер страницы зависит от типа процессора В частности, для процессоров x86 он равен 4 Кб, а для Alpha (под управлением как 32-разрядной, так и 64-разядной Windows 2000) — 8 Кб. Иногда система сама резервирует некоторые регионы адресного пространства в интересах.Если Вы попытаетесь зарезервировать регион размером 10 Кб, система автоматически округлит заданное Вами значение до большей кратной величины. А зто значит что на x86 будет выделен регион размером 12 Кб, а на Alpha — 16 Кб.Когда зарезервированный регион адресного пространства становится не нужен, ею следует вернуть в общие ресурсы системы.Эта операция — освобождение (releasing) региона — осуществляется вызовом функции VirtualFree

Передача региону физической памяти

Чтобы зарезервированный регион адресного пространства можно было использовать, Вы должны выделить физическую память и спроецировать её на этот регион. Такая операция называется передачей физической памяти (committing physical storage). Чтобы передать физическую память зарезервированному региону, Вы обращаетесь все к той же функции VirtualAlloc.Передавая физическую память регионам, нет нужды отводить ее целому региону. Можно, скажем, зарезервировать регион размером 64 Кб и нередать физическую память только его второй и четвертой страницам. Когда физическая память, переданная зарезервированному региону, больше не нужна, ее освобождают. Эта операция — возврат физической памяти (decommitting physical storage) — выполняется вызовом функции VirtualFree.         
Физическую память следует рассматривать как данные, хранимые в дисковом файле со страничной структурой. Поэтому, когда приложение передает физическую память какому-нибудь региону адресного пространства (вызывая VirtualAttoc), она на самом деле выделяется из файла, размещенного на жестком диске. Размер страничного файла в системе — главный фактор, определяющий количество физической памяти, доступное приложениям. Реальный объем оперативной памяти имеет гораздо меньшее значение. Физическая память в страничном файле не хранится Windows 2000 может использовать несколько страничных файлов, и, если они расположены на разных физических дисках, операционная система работает гораздо быстрее, поскольку способна вести запись одновременно на нескольких дисках. Чтобы добавить или удалить страничный файл, откройте в Control Panel апплет System, выберите вкладку Advanced и щелкните кнопку Performance Options. Нa экране появится следующее диалоговое окно.

Однако система действует не так, иначе на загрузку и подготовку программы к запуску уходило бы слишком много времени.При запуске приложения система открывает его исполняемый файл и определяет объем кода и данных. Затем резервирует регион адресного пространства и помечает, что физическая память, связанная с этим регионом, — сам ЕХЕ-файл,то есть вместо выделения какого-то пространства из страничного файла система использует истинное содержимое, или образ (image) ЕХЕ-файла как зарезервированный регион адресного пространства программы. Благодаря этому приложение загружается очень быстро, а размер страничного файла удается заметно уменьшить. Образ исполняемого файла (т. e. EXE- или DLL-файл), размещенный на жестком диске и применяемый как физическая память для того или иного региона адресного пространства, называется проецируемым в память файлом (memory-mapped file). При загрузке EXF, или DLL система автоматически резервирует регион адресного пространства и проецирует на него образ файла. Помимо этого, система позволяет (с помощью набора функций) проецировать на регион адресного пространства еще и файлы данных
Когда EXE- или DLL-файл загружается с дискеты Windows 2000 целиком копируют его в оперативную память, а в страничном файле выделяют такое пространство, чтобы в нем мог уместиться образ загружаемого файла. Если нагрузка на оперативную память в системе невелика, EXE- или DLLфайл всегда запускается непосредственно из оперативной памяти.Так сделано для корректной работы программ установки. Обычно программа установки запускается с первой дискеты, потом поочередно вставляются следующие диски, на которых собственно и содержится устанавливаемое приложение. Если системе понадобится какой-то фрагмент кода EXE- или DLLмодуля программы установки, на текущей дискете его, конечно же, пет. Но, поскольку система скопировала файл в оперативную память (и предусмотрела для него место в страничном файле), у нее не возникнет проблем с доступом к нужной части кода программы установки


Атрибуты защиты

Отдельным страницам физической памяти можно присвоить свои атрибуты защиты показанные в следующей таблице.

           Атрибут защиты

Описание

PAGE_NOACCESS

Попытки чтения, записи или исполнения содержимого памяти на этой странице вызывают нарушение доступа

PAGE_READONLY

Попытки записи или исполнения содержимого памяти на этой странице вызывают нарушение доступа

PAGE_READWRITE

Попытки исполнения содержимого памяти на этой странице вызывают нарушение доступа

PAGE_EXECUTE

Попытки чтения или записи на этой странице вызывают нарушение доступа

PAGE_EXECUTE_READ

Попытки записи на этой странице вызывают нарушение доступа

PAGE_EXECUTE_READWRITE

На этой странице возможны любые операции

PAGE_WRITECOPY

Попытки исполнения содержимого памяти на этой странице выбывают нарушение доступа, попытка записи приводит к тому, что процессу предоставляется "личная" копия данной страницы

PAGE_EXECUTE_WRITECOPY

На этой странице возможны любые операции, попытка записи приводит к тому, что процессу предоставляется "личная" копия данной страницы

Защита типа "копирование при записи"

Атрибуты защиты, перечисленные в предыдущей таблице, достаточно понятны, кроме двух последних: PAGE_WRITECOPY и PAGE_EXECUTE_WRITECOPY. Они предназначены специально для экономного расходования оперативной памяти и места в страничном файле. Windows поддерживает мехянизм, позволяющий двум и более процессам разделять один и тот же блок памяти. Например, если Вы запустите 10 экземпляров программы Notepad, все экземпляры будут совместно использовать одни и те же страницы с кодом и данными этой программы. И обычно никяких проблем не возникает — пока процессы ничего не записывают в общие блоки памяти. Только представьте, что творилось бы в системе, если потоки из разных процессов начали бы одновременно записывать в один и тот же блок памяти!

Чтобы предотвратить этот хаос, операционная система присваивает общему блоку памяти атрибут защиты "копирование при записи" (copy-on-write). Когда поток в одном процессе попытается что-нибудь записать в общий блок памяти, в дело тут же вступит система и проделает следующие операции:

  1. Найдет свободную страницу в оперативной памяти. Заметьте, что при первом проецировании модуля на адресное пространство процесса эта страница будет скопирована на одну из страниц, выделенных в страничном файле. Поскольку система выделяет нужное пространство в страничном файле еще при первом проецировании модуля, сбои на этом этапе маловероятны.
  2. Скопирует страницу с данными, которые поток пытается записать в общий блок памяти, на свободную страницу оперативной памяти, полученную на этапе 1. Последней присваивается атрибут защиты PAGE_WRITECOPY или PAGE_EXECUTE_WRITECOPY. Атрибут защиты и содержимое исходной страницы не меняются.
  3. Отобразит виртуальный адрес этой страницы в процессе на новую страницу в оперативной памяти.

Когда система выполнит эти операции, процесс получит свою копию нужной страницы памяти.

Кроме того, при резервировании адресного пространства или передаче физической памяти через VirtualAlloc нельзя указывать атрибуты PAGE_WRITECOPY или PAGE_EXECUTE_WRITECOPY. Иначе вызов VirtualAlloc даст ошибку, a GetLastError вернет код ERROR_INVALID_PARAMETER. Дело в том, что эти два атрибута используются операционной системой, только когда она проецирует образы EXE- или DLL-файлов.

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.