Рефераты. Вимірювання роботи виходу електронів методом Кельвіна

Вимірювання роботи виходу електронів методом Кельвіна

Міністерство науки та освіти України

ДНІПРОПЕТРОВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

Факультет фізики, електроніки та комп’ютерніх систем

Кафедра радіоелектроніки

 









КУРСОВА РОБОТА

НА ТЕМУ:

«Вимірювання роботи виходу електронів методом Кельвіна»













Дніпропетровськ 2009


Реферат

У роботі описані, робота виходу електрона, основні принципи вимірювання роботи виходу електрона. Окремо сконцентровано увагу на методі Кельвіна.


Зміст


Вступ

1.    Робота виходу електронів

1.1  Робота виходу електронів з металу

2.    Методи виміру роботи виходу електронів

2.1  Вимірювання роботи виходу електронів по величині густини струму термоеміссії

2.2  Вимірювання роботи виходу електронів за допомогою явища фотоефекту

2.3  Вимірювання роботи виходу електронів через контактну різницю потенціалів

2.4  Вимірювання роботи виходу електронів методом динамічного конденсатора

2.5  Вимірювання роботи виходу електронів методом статичного конденсатора

2.6  Вимірювання роботи виходу електронів методом електронного пучка Андерсона

3.    Вимірювання роботи виходу електронів методом Кельвіна

Висновки

Список використаних джерел


Вступ


Поштовхом до перших досліджень роботи виходу послужили дві причини. Одна з них - гостра потреба електровакуумної промисловості, що швидко розвивалася, в довговічних і ефективно працюючих катодах. Інша причина – виникла у розумінні того, що робота виходу є фундаментальним поняттям в новій електронній теорії металів і тому вимірювання цієї величини в різних умовах дозволяє глибше розпізнати властивості металів.

Багато експериментів, переслідуючі чисто технологічні цілі, внесли свій внесок в теорію, тоді як успіхи теорії швидко знаходили своє втілення в промисловому виготовленні електронних приладів.

Останніми роками, сильно збільшилася необхідність техніки у вимірюванні роботи виходу. Розвиток термоелектронних пристроїв прямого перетворення, поліпшення параметрів фоточутливих детекторів, потреба в стабільних катодах, що працюють при все більш високому тиску і все більш низьких температурах, необхідність підвищення надійності іонних джерел в масс-спектрометрії - ось лише декілька чинників, що стимулювали інтенсивні дослідження роботи виходу.

Одним із способів вимірювання роботи виходу електрона із матеріалів є метод Кельвіна, який ґрунтується на контактній різниці потенціалів та динамічному конденсаторі.


1. Робота виходу електронів

Робота виходу — найменша кількість енергії, яку необхідно надати електрону для того, щоб вивести його з твердого тіла у вакуум. Робота виходу є характеристикою речовини. Як і будь-яку іншу енергетичну характеристику ії можна вимірювати в джоулях, але це непрактично. Зазвичай роботу виходу заведено вимірювати в електронвольтах (еВ).


1.1    Робота виходу електронів з металу

Емісія електронів з металу може спостерігатися при певних умовах. Залишити метал можуть вільні електрони, якщо їм надати енергію, достатню для подолання електричних сил, що перешкоджають виходу. Виникнення цих сил пов’язано з наступними причинами.

Над поверхнею металу постійно існує хмарка негативного заряду, яка утворюється за рахунок електронів, що перетнули поверхню металу та віддаляються на відстань порядку постійної гратки і повертаються назад. Цей негативний заряд над поверхнею металу та позитивний заряд поверхневих іонів створюють подвійний електричний шар, який своїм полем затримує рух електронів від металу.

Електрон, який вийшов за межі металу, викликає появу на поверхні зразку додатного індукованого заряду, звідки між електроном та зразком виникає сила притягання, що перешкоджає віддаленню електронів. Величину цієї сили можна розрахувати за методом дзеркальних зображень. Тому цю силу називають силою дзеркального зображення.

Сили дзеркального зображення та поле подвійного електричного шару утримують вільний електрон у металі, і робота проти цих сил являє висоту потенціального бар’єра W, який потрібно подолати, щоб електрон мав можливість залишити метал.

Таким чином, вільний електрон у металі з енергетичної точки зору знаходиться у потенціальній ямі глибиною W відносно вакууму. На рис.1а представлена потенціальна енергія електрона всередині металу, при цьому потенціальна енергія електрона в вакуумі приймається за нуль відліку.


                                     а)                                                      б)

Рис.1. Потенціальна яма, в якій знаходиться електрон у металі (а); розподіл електронів за енергіями в металі (б)


Знаходячись всередині потенціальної ями, вільні електрони беруть участь у тепловому русі і мають кінетичну енергію. Розподіл електронів за кінетичною енергією визначається на основі квантової статистики вільних електронів у металі. Число вільних електронів з енергією між ε та ε + еφ при довільній температурі металу дається співвідношенням:


         (1.1)


де m – маса електрона, h – стала Планка, T – температура, k – стала Больцмана, εF – енергія Фермі.

Вигляд розподілу (1.1) представлено на рис.1б.

Як видно з рис.1б, при температурі Т=0 максимальна кінетична енергія, яку можуть мати електрони,– енергія Фермі εF – менше глибини потенціальної ями W, тому електрони не можуть залишити метал. Для подолання потенціального бар’єра W метал-вакуум високоенергетичним електронам, які знаходяться на рівні енергії Фермі, потрібно надати додаткову енергію W – εF. Ця різниця між висотою потенціального бар’єра W та енергією Фермі εF називається роботою виходу електрона:


A = W – εF = еφ             (1.2)


Робота виходу записується тут як еφ, де φ – потенціал електричного поля, що заважає виходу електрона з металу; походження його розглядалось вище.

Величина роботи виходу різна для різних матеріалів. Для здійснення емісії електронів додаткова енергія може бути надана різними способами:

- при зовнішньому фотоефекті за рахунок енергії світлових квантів, що поглинаються електронами;

- при вторинній електронній емісії – за рахунок електронів та іонів, що вдаряються об поверхню матеріалу та потрапляють всередину його.

При термоелектронній емісії ця енергія передається електронами за рахунок теплової енергії тіла. Зі збільшення температури змінюється характер розподілу електронів за енергією (рис.1б). При достатньо високій температурі з’являється певна кількість електронів в енергетичних станах, енергія яких перевищує висоту бар’єра (рис.1б). Ці електрони можуть взяти участь в емісії (на рис.1б ці електрони „заштриховані”).


2. Методи виміру роботи виходу електронів


Відомі численні способи визначення роботи виходу електрона, засновані на таких фізичних явищах, як:

• термоелектронна емісія;

• фотоефект;

• холодна емісія;

• поверхнева іонізація;

• контактна різниця потенціалів.

До недоліків вищенаведених способів визначення роботи виходу електронів з матеріалів можна віднести достатню апаратну складність самих установок, а також технологічну складність і тривалість проведення робіт. Складність робіт витікає з самих фізичних ефектів і відомих теоретичних передумов, на яких вони засновані.


2.1 Вимірювання роботи виходу електронів по величині густини струму термоеміссії

Якщо зміряти струм емісії Iа електронної лампи при насиченні (в цьому випадку всі електрони, що вийшли з металу беруть участь в анодному струмі), то по величині площі S поверхні нитки катода можна обчислити густину струму емісії:


γ=Iа/S.                                              (2.1)


Температура нитки рожарювання теж може бути встановлена експериментально. Тоді за допомогою закону Річардсона - Дешмана може бути обчислениа робота виходу А. Для зручності розрахунку використовують залежність  від .

Розділивши рівність (2.1.) на Т, після логарифмування отримаємо:


                                       (2.2)


З формули (2.2) виходить:


                                       (2.3)


Якщо  вимірюється в А/м2, постійна Больцмана в Дж/К, то значення А будуе в джоулях. Для перекладу джоуля в електрон-вольти використовується співвідношення: 1эВ=1,6·10-19 Дж.

Температуру рожарення катода можна встановити за допомогою залежності температури розжарення Т від величини χ=Р/ld. Тут Р - потужність струму нитки розжарення; l - довжина нитки; d - діаметр нитки.


Р=IрUр                                                       (2.4)


де Iр - струм розжарення; Uр - напруга розжарення.

Величини Ia Iр Uр вимірюються по приладах, як показано на рис. 2.



 

Рис.2. Установка для вимірювання роботи виходу електронів по величині густини струму термоеміссії

2.2 Вимірювання роботи виходу електронів за допомогою явища фотоефекту

Фотоефектом називається звільнення (повне або часткове) електрона від зв'язків з атомами і молекулами речовини під дією світла (звичайного, інфрачервоного, ультрафіолетового). Якщо електрони виходять за межі освітлюваної речовини (повне звільнення), то фотоефект називається зовнішнім (відкритий в 1887 році Герцем і детально досліджений в 1888 році А.Г. Столетовим). Якщо ж електрони не тільки втрачають зв'язок зі «своїми атомами» і молекулами, але і залишаються всередині освітлюваної речовини як «вільні електрони» (часткове звільнення), збільшуючи тим самим електропровідність речовини, то фотоефект називається внутрішнім (відкритий в 1873 році У.Смитом). Зовнішній фотоефект спостерігається у металів. На Рис. 3 приведена схема, за допомогою якої можна спостерігати зовнішній фотоефект.


Рис.3. Установка для вимірювання роботи виходу електронів за допомогою явища фотоефекту.


Із третього закону фотоефекту (для кожної речовини існують порогові значення частоти та довжини хвилі світла, які відповідають межі існування фотоефекту; світло з меншою частотою та більшою довжиною хвилі фотоефекту не викликає) випливае поняття «червона межа фотоефекту» (оскільки це порогове значення завжди ближче до червого світла, то йому дали назву червона межа фотоефекту).

Зрозуміло, що червона межа фотоефекту існує завдяки притягуванню електронів до ядер. Разом з тим, останній закон не можна пояснити на основі уявлення про світло як неперервні плавні коливання у вакуумі-ефірі: такі хвилі мали довго розгойдувати електрони до того моменту, коли швидкість останніх стала б достатньою для відриву від металу.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.