Рефераты. Видеоадаптеры, классификация, особенности строения и работы p> Чипсет фирмы 3DFX - Voodoo Graphics (VooDoo1) надолго определил стандарты качества, скорости и принципов 3D-графики на PC. Voodoo Graphics состоял из двух микросхем, снабжаемых раздельными банками памяти - Pixel FX и Texel FX. Первая была предназначена для работы с буфером кадров и Z- буфером. Она осуществляла закраску треугольников, используя для этого данные, поступающие со второго кристалла, который контролировал буфер текстур и отвечал за все операции по получению данных и их интерполяции.
Судя по всему, первоначально эта архитектура разрабатывалась для более серьезных, неигровых применений, и первые мощные платы Obsidian (позже и
Obsidian II на базе чипсета Voodoo2) использовались военными. Тактовая частота — до 60 МГц. Поддерживалась только память типа EDO (время доступа —
30—35 нс), при этом размер буфера кадров мог достигать 4 Мб, а буфера текстур — 8 Мб. Максимальное разрешение — 800х600 точек, у платы с буфером кадров емкостью 2 Мб — 640х480. Скорость заполнения — 50—60 млн пикселей в секунду. Производительность — около 500 тыс. треугольников в секунду. Вывод трехмерных сцен в окне Windows не поддерживался (была возможна работа только на полный экран). Также необходимо отметить ещё несколько особенностей. Первое – это был внешний 3D-ускоритель, обычная 2D-видеокарта соединялась с картой на базе VooDoo Graphics посредством скозного кабеля, а та, в свою очередь, соединялась с монитором, пропуская ее видеосигнал через себя. Когда программа начинала использовать 3D-функции, тогда VooDoo просто блокировал сигнала обычной видеоплаты и работал сам. Второе – это масштабируемость (массово эта технология стала применяться только в
Voodoo2), т.е. можно соединить две карты в одну и при этом увеличивается максимальное разрешение и, конечно, скорость. И третье - удобный для программирования API Glide, который поддерживался только картами от 3Dfx и до сих пор еще поддерживается разработчиками программного обеспечения.

К тому же, 3DFX не стала лениться и добилась широкой поддержки своего продукта разработчиками игр – путем личных бесед с программистами и руководителями фирм, поставки вариантов своих карт для проверки работоспособности программ и создания (без проволочек и задержек) SDK
(Software Development Kit) для Glide и бесплатной рассылки его почти всем девелоперским фирмам.

Только почти через год, к концу 1996-нач. 1997 года появился конкурент этому чипсету. И стал им новый продукт фирмы nVidia – Riva128. Фирма учла свой неудачный опыт с NV1 и пошла по уже накатанной 3DFX колее в архитектуре своего чипсета. Новый ускоритель работал с принятой всеми разработчиками программного обеспечения полигонной технологией но, кроме повторений некоторых идей 3DFX, имел и свои плюсы. Сразу отметим вдвое большую разрядность шины памяти. Первый плюс. Второй плюс заключается в интеграции 2D/3D ускорителей на одной микросхеме. Также, очень неплохой являлась работа с вводом/выводом композитного видеосигнала (конечно для видеоплаты, у которой эти функции не являются основными). Микросхема стала одной из первых, кто был совместим с новой графической шиной AGP (не теряя поддержки PCI) и была первой, корректно и осмысленно реализовавшей естественную для AGP архитектуру DIME (Direct Memory Execution), которая позволяет отводить часть оперативной памяти компьютера под хранение текстур
(AGP Memory). Таким образом буфер кадров и Z-буфер находятся в локальной памяти платы, а большая часть текстур хранится в системной памяти компьютера. Поддерживала работу только с 16 битным цветом. Riva128 была сильно процессорозависимым чипом - максимальные характеристики были достижимы только на недавно появившихся тогда процессорах класса PentiumII.
Fillrate составлял 100 млн. пикселей в секунду. Геометрия – до 5 млн. треугольников в секунду. Также существовал несколько доработанный вариант
Riva 128ZX с увеличенным объемом памяти до 8 Мб (у обычной Riva 128 – 2-4
Мб).

В конце 1997-нач. 1998 г. (вообще, с тех пор именно это время почему-то стало у фирм любимым временем представления новых 3D-продуктов) появились ускорители следующего поколения.

Первым вышел новый чипсет от 3DFX – VooDoo2. Это было трехчиповое решение – чипсет имел 2 микросхемы Texel FX2, работавших под управлением схемы Pixel FX2. Карты на его основе продолжали традиции VooDoo Graphics и были дополнительными картами для основной видеоплаты. В связи с наличием двух текстурных процессоров, стало возможным наложение двух текстур за один проход - “бесплатное” мультитекстурирование (“бесплатное” в том смысле, что производительность в режиме мультитекстурирования не падала, по сравнению с однотекстурным режимом, так как в этом случае второй текстурный процессор просто не работал). Тактовая частота кристалла возросла до 100 МГц. Имел
192-битную архитектуру, скорость работы с памятью – 2,2 Гб/с, fill rate –
90 Mpixels/sec, способен обсчитывать 3млн. полигонов/с. Именно в этом чипсете была полностью реализована для массового пользователя технология
SLI (Scan Line Interleave). По этой технологии 2 карты VooDoo 2 устанавливались в систему и соединялись для параллельной работы (одна считала четные строки изображения, а вторая – нечетные). При этом теоретическая производительность вырастает вдвое (реально чуть меньше). За счет этого Voodoo2 удавалось долго держаться на плаву.

Позже появился и главный конкурент – 3D-чип Riva TNT (TwiN Texel) от фирмы nVidia. Он тоже имел два текстурных конвейера и мог делать однопроходное мультитекстурирование и трилинейную и анизотропную фильтрацию. Имел 24(16)-битный Z-буфер и 8-битный буфер шаблонов (через который можно было делать интересные эффекты, вроде “правильных” теней).
Fill rate – 250 Mpixels/sec (125 – в режиме мультитекстурирования), 6 млн. полигонов/с. Обладал прекрасными 2D- возможностями – имел RAMDAC 250 MHz, акселерацию для распаковки видео форматов MPEG-1 и MPEG-2 (для проигрывания
DVD).

Чуть позже TNT, 3DFX выпустил на рынок первый свой 2D/3D-чипсет Voodoo
Banshee. Это был вариант Voodoo 2, но без одного Texel FX2 процессора и со встроенной в чип 2D-графикой. Был медленнее Voodoo2 в режиме мультитекстурирования, который фактически вытеснил однотекстурный к этому времени, но все равно обладал неплохой скоростью и качественной графикой, поэтому, хотя и не стал лидером продаж, нашел свою долю рынка.

Вышедшие через год чипсеты 3DFX Voodoo 3 и nVidia Riva TNT2 являлись эволюционным развитием предшественников и были, по существу, вариантами
Banshee и TNT - сделанными на новом технологическом процессе, с исправленными ошибками, добавлением второго текстурного процессора (для
Voodoo3), работающие на более высоких частотах чипа и памяти, и с некоторыми мелкими улучшениями и нововведениями. Так, технологический процесс уменьшился с 0,35 мкм до 0,25-0,22 мкм, частоты возросли от 100 до
143-183 MHz, выросло количество адресуемой памяти – до 32 Мб и режимы 32- битной 3D-графики приобрели вполне рабочую скорость в высоких разрешениях
(но не Voodoo3 – 3DFX считала, что 32-битный цвет никому не нужен и не интересен).

В настоящий момент главные игроки на поле трехмерной акселерации – фирмы nVidia и 3DFX поменялись ролями (теперь 3DFX выступает в роли более слабого конкурента nVidia) выбрали себе разные пути развития, по которым и пытаются повести весь мир за собой.

NVidia выбрала путь создания устройств менее процессорозависимых, способных выполнять весь цикл рендеринга самостоятельно – устройств с аппаратным расчетом трансформации, отсечения и освещения, так называемым hardware T&L (TCL). У нее уже вышло два чипсета с поддержкой T&L –
GeForce256 и GeForce2 GTS. Их характеристики впечатляют – хотя они и не намного (GeForce2 GTS – всего в 2,5-3 раза) быстрее чем устройства, которые для этих расчетов используют центральный процессор PC, но зато при этом они почти полностью освобождают его от работы над графикой (все занимается специальный графический процессор – GPU) и позволяют использовать ЦП для программирования физики или искусственного интеллекта противников в играх, для обработки красивого окружающего звука, процедурных текстур (текстур, расчет которых идет с использованием фрактальной математики) и пр.

К сожалению, пока их новые идеи и продукты слабо поддержаны разработчиками, но такие программы уже появляются, а поддержка hardware T&L в DirectX7 и OpenGL дает все основания думать, что даром усилия фирмы nVidia не пропадут и что она движется в правильном направлении. К тому же, там где hardware T&L не поддерживается, новые акселераторы могут работать как обычные (но более быстрые) и все равно являются лидерами по производительности.

3DFX пошла по пути увеличения fill rate и использования полноэкранного сглаживания. Она разработала архитектуру VSA-100, одночиповое решение с поддержкой 32-битного цвета, которое можно масштабировать, объединяя до 32 чипов (каждый со своей собственной памятью), а по некоторым данным и до 128 чипов, добиваясь при этом fill rate более 3,5 Гигатекселей в секунду! А еще, при использовании более 2-х чипов на плате, становится доступным использование их новейшей технологии T-Buffer.

Технология T-Buffer была создана инженерами компании 3dfx с тем, чтобы повысить уровень реализма визуализации 3D графики в персональных компьютерах. Достигнуть этого можно при условии избавления от различных дефектов изображения, возникающих при воспроизведении компьютерной 3D графики. Конечная цель заключается в приближении качества создаваемого изображения на компьютерных системах к качеству изображений, получаемых с помощью фото или видеокамер.

Технология T-Buffer, на которой решила сконцентрироваться компания
3dfx, должна способствовать обеспечению более качественной визуализации компьютерной 3D графики за счет наложения различных цифровых эффектов в режиме реального времени на сформированное в результате рендеринга изображение. Самыми важными среди предлагаемых к использованию эффектов являются: full-scene spatial anti-aliasing (сглаживание всей сцены, т.е. удаление неровностей линий и границ полигонов на всем пространстве видимой сцены, чаще называемым просто full-scene anti-aliasing), motion blur
(эффект размытости контуров быстро движущихся объектов, аналогичный тому, который возникает при съемке фотокамерой движущихся объектов) и depth of field (эффект облегчающий визуальное восприятие конкретных объектов сцены за счет фокусировки только на конкретном объекте или части сцена, а все остальная сцена остается не в фокусе, т.е. размывается). Эффект depth of field позволяет использовать такой параметр, как расстояние между объектами. Делается это за счет введения различных уровней четкости или величины фокусировки для каждого объекта сцены. Объект или часть сцены, на которых сделана фокусировка, выглядят более четко, а все остальные объекты или окружающая сцена выглядят более размытыми. Таким образом, внимание наблюдателя может концентрироваться как на близких, так и на удаленных объектах или частях сцены.

Пока компания запаздывает с выпуском своих новых продуктов на VSA-100 – видеоплат серий Voodoo4 и Voodoo5, но уже стало известно, что хотя они и имеют fill rate более высокий (не намного), чем чипы GeForce256 и GeForce2 от nVidia, но включение функций T-Buffer сильно тормозит их работу (а для карт серии Voodoo5 6000, которые несут в себе четыре чипа VSA-100 и могут работать с T-Buffer на нормальных скоростях, установлена чрезвычайно высокая цена – более 600 долларов!).

К тому же, все эффекты новой технологии можно использовать на любой видеоплате, которая имеет хорошую скорость – например, уже имеются драйвера с полноценной (и вполне работоспособной по скорости) поддержкой full-scene spatial anti-aliasing для видеокарт на базе GeForce. А разработчики программного обеспечения новую технологию пока не поддерживают никак, только антиалиасинг можно использовать в любых, даже старых, программах, а новые эффекты должны быть сразу запрограммированы в программах. Так что, похоже, T-Buffer, в том виде, как его преподносит 3DFX, не нужен никому и этот путь ведет фирму в никуда.

Я почти не коснулся в своей работе продукции других фирм-производителей видео чипсетов – таких как ATI, Matrox, S3, Intel, NEC (Videologiс), 3DLabs и других. Все они либо шли по проторенной nVidia и 3DFX дороге (и при этом не слишком преуспели в скорости и качестве своих продуктов по сравнению с главными конкурентами), либо (зачастую, к сожалению, совершенно не заслуженно) их инновации не пришлись “ко двору” и были или совсем не востребованы (как, например, тайловая архитектура чипов Videologic), или позднее выпущены в новых продуктах гигантами индустрии.

Вот, вкратце, и вся история, классификация и особенности строения и работы видеоадаптеров персональных компьютеров.

Использованные материалы:

1) материалы статей и обзоров сайта iXBT Hardware (ixbt.stack.net)

2) материалы статей и обзоров сайта 3D News (www.3dnews.ru)

3) материалы статей и обзоров журнала и сайта “Компьютерра”

(www.computerra.ru)

4) материалы статей и обзоров журнала и сайта “Мир ПК” (www.pcworld.ru)

5) материалы статей и обзоров журнала и сайта “PC Magazine: Russian

Edition” (www.pcmagazine.ru)

6) материалы журнала фирмы “Пирит” “Upgrade” №№7 и 8

7) Е.Рудометов, В.Рудометов. Архитектура ПК, комплектующие, мультимедиа.- СПб: “Питер”, 2000


Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.