Рефераты. Устройство, характеристика и виды резисторов

Старение резисторов проявляется главным образом в изменении сопротивления, которое вызывается структурными изменениями резистивного элемента за счет кристаллизации, окисления и различных электрохимических процессов, а также за счет изменения свойств переходных контактов. Процессы старения ускоряются в условиях повышенных температур, влажности и при электрической нагрузке. Наиболее устойчивыми к действию факторов старения являются проволочные резисторы, а среди непроволочных - тонкослойные металлодиэлектрические и металлоокисные, менее стойкими считаются композиционные лакопленочные. Процессы старения могут изменить сопротивление резистора на несколько процентов.

Собственные шумы резисторов складываются из тепловых шумов и токовых шумов. Уровень шумов измеряется Э.Д.С. шумов.

Возникновение тепловых шумов связано с флуктуационными изменениями объемной концентрации свободных электронов в резистивном элементе, обусловленными их тепловым движением. Тепловые шумы характеризуются непрерывным, практически равномерным спектром. Напряжение тепловых шумов Ет не зависит от материала, а определяется температурой и величиной сопротивления:


Ет = (4·k·Т·R·DF)1/2, B,

где k - постоянная Больцмана, к = 1,38·1023 Дж/K;

Т - температура, К;

R - сопротивление, Ом;

DF - ширина полосы частот, Гц.

При Т = 300К можно пользоваться формулой:


ЕТ =(R DF)1/2 / 8, мкв,


где R - сопротивление, кОм;

DF - ширина полосы частот, кГц.

Тепловые шумы нельзя исключить или уменьшить, они существуют независимо от тока, протекающего в резисторе. Тепловые шумы определяют шумовые характеристики проволочных резисторов. Высокоомные резисторы могут иметь напряжение тепловых шумов значительно выше шумов усилительных приборов.

При прохождении тока по непроволочному резистору дополнительно возникают токовые шумы. Они обусловлены дискретной структурой резистивного элемента. Интенсивность токовых шумов зависит от проходящего тока. При прохождении электрического тока происходят локальные нагревы, сопровождающиеся разрушением контактов между одними частицами и появлением контактов между другими в результате их спекания, возникновением новых проводящих цепочек. Это вызывает флуктуацию сопротивления и тока и на резисторе появляется шумовая составляющая напряжения. Токовый шум имеет непрерывный спектр, спектральная плотность которого пропорциональна величине 1/f. Поскольку Э.Д.С. шума зависит от тока, то она зависит и от напряжения U, приложенного к резистору:


Ei=ki·U,

где ki - коэффициент, зависящий от конструкции резистора, свойств резистивного слоя, полосы частот, в пределах которой определяется шум; для различных типов резисторов ki меняется от 0,2 до 50 мкВ/В.

Уровень шума определяется в полосе частот 60-6000 Гц.

Если напряжение, приложенное к резистору, соответствует номинальной мощности, то


Uмакс = (Pном·Rном)1/2 или Ei = ki(Pном·Rном)1/2 ,


отсюда следует, что токовый шум пропорционален Rном1/2. Токовый шум значительно превышает тепловой. Уровень токовых шумов у композиционных резисторов в несколько раз больше, чем у пленочных. Чем однороднее структура резистивного слоя, тем меньше токовый шум. По уровню шумов резисторы подразделяют на группу А, обладающих ki £ 1 мкВ/В и группу Б - ki £ 5 мкВ/В.

Частотные свойства резисторов. Полное сопротивление резистора имеет комплексный характер и зависит от частоты. Это вызвано наличием распределенных по длине резистивного элемента емкости и индуктивности, поверхностным эффектом, диэлектрическими потерями в каркасе и покрытиях. Изменяются активные и реактивные составляющие полного сопротивления, и соответственно фазовые сдвиги, создаваемые резистором в электрической цепи.

Проволочные резисторы отличаются большими значениями распределенных емкости и индуктивности, поэтому их реактивность проявляется уже на частотах в несколько килогерц. Непроволочные резисторы имеют значительно меньшие значения распределенных параметров и могут применяться на частотах в сотни и даже тысячи мегагерц.

Индуктивность резистора определяется конструкцией и размерами резистивного элемента и выводов. Обычно она невелика и погонная индуктивность составляет примерно 3 нГн/см кроме случаев, когда для увеличения сопротивления резистора резистивному слою придается вид спирали. В этом случае погонная индуктивность увеличивается до десятых долей микрогенри на сантиметр. Индуктивность выводов тем меньше, чем они короче и толще. Поэтому высокочастотные резисторы не имеют проволочных выводов, они снабжаются плоскими контактами, расположенными непосредственно на резистивном элементе, контакты впаиваются в соответствующие участки схемы.

Емкость резистора зависит от его формы, размеров, конструкции выводов, от диэлектрической проницаемости материалов каркаса и защитного покрытия. Распространенные типы резисторов обладают погонной емкостью от 0,05 до 0,15 пФ/см. Емкость зависит и от расположения резистора относительно других элементов конструкции.

Активное сопротивление Rf и емкость Cf являются частотнозависимыми. При f·C·R0 £ 0,1 (где C - полная емкость резистора, пФ; R0 - сопротивление постоянному току, Мом; f - частота, МГц). Эта зависимость выражена слабо и может не учитываться. С точностью до 1% можно считать Rf = R0. На более высоких частотах, когда f·C·R0 > 0,1, сопротивление резистора падает и до значения f·C×R0× £ 0,5 может быть определено по формуле


Rf=R0·[ 1-0,9·(f·C·R0)2 ].


Из этой формулы можно определить граничную частоту резистора fгр, на которой активное сопротивление уменьшается на 1%.


fгр=0,1/(С·R0).


На частотах выше 1МГц дополнительное уменьшение активной составляющей вызывается диэлектрическими потерями в каркасе и в защитном покрытии. Поэтому каркасы высокочастотных резисторов изготавливают из специальной керамики с малыми величинами диэлектрической проницаемости и тангенса угла диэлектрических потерь, не применяют защитное покрытие.

Преобладающее влияние индуктивности проявляется у резисторов имеющих сопротивление ниже 300 Ом. Полное сопротивление увеличивается с ростом частоты до возникновения шунтирующего влияния емкости.

Наименьшее значение реактивности имеют металлодиэлектрические и металлопленочные резисторы.

В импульсном режиме через резистор проходят повторяющиеся импульсы тока, мгновенные значения которых могут превышать величины режима непрерывной нагрузки.

Паразитные емкости и индуктивности искажают форму импульсов, уменьшают максимальное значение сигнала за счет изменения модуля сопротивления. Форма импульса сохраняется удовлетворительной при выполнении условия


fмакс £ 0,35/tф,


где fмакс - частота, на которой модуль полного сопротивления уменьшается в 1,41 раз;

 tф - длительность фронта импульса.

Импульсная мощность может значительно превышать мощность рассеяния при непрерывной нагрузке. Для импульсов прямоугольной формы средняя мощность определяется выражением


Pср = Uи2·tи·Fи /R = (Uи2 /R)( tи / Tи) = Pи/Q ,


где Uи - амплитуда импульса;

tи - длительность импульса;

Fи - частота повторения импульсов;

Ти = 1/Fи - период повторения импульсов;

Q = Tи/tи - скважность;

Pи - импульсная мощность.

Для нормальной работы резистора необходимо, чтобы средняя мощность не превосходила номинальную мощность резистора. Максимально допустимая длительность импульса ограничивается температурой нагрева резистивного элемента за время действия импульса, т.е. ограничивается допустимой энергией каждого отдельного импульса и средней температурой резистора. Напряжение на резисторе во время импульса не должно превышать напряжение пробоя изоляционных материалов и воздушных зазоров. Резисторы, предназначенные для работы в импульсном режиме, должны обладать высокой степенью однородности резистивного элемента, чтобы исключить локальные перегревы в местах неоднородностей.


3. ХАРАКТЕРИСТИКИ ПЕРЕМЕННЫХ РЕЗИСТОРОВ


Переменные резисторы дополнительно характеризуют рядом параметров: функциональной характеристикой, разрешающей способностью, шумами скольжения, износоустойчивостью и некоторыми другими.

Функциональная характеристика определяет зависимость сопротивления переменного резистора или напряжения от положения подвижного контакта. По характеру функциональной зависимости переменные резисторы делятся на линейные - типа А и нелинейные - типов Б, В, И, Е и др.. Из резисторов с нелинейной функциональной характеристикой наиболее распространены резисторы с логарифмической (Б) и обратнологарифмической (В) зависимостями. Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники.

Отклонения от заданной кривой определяются допусками. Для резисторов общего применения допуск устанавливается в пределах 2 - 20%, а для прецизионных - в пределах 0,05 - 1%.

Разрешающая способность показывает, при каком наименьшем изменении угла поворота или перемещении подвижной системы может быть различимо изменение сопротивления резистора. У непроволочных резисторов разрешающая способность очень высокая и ограничивается дефектами резистивного элемента и контактной щетки, а также переходным сопротивлением между проводящим слоем и подвижным контактом.

Разрешающая способность переменных проволочных резисторов зависит от числа витков резистивного элемента и определяется изменением сопротивления при перемещении подвижного контакта на один виток. Чем больше витков содержит резистивный элемент, тем выше разрешающая способность. Разрешающая способность резисторов общего применения находится в пределах 0,1 - 3%, а прецизионных - до тысячных долей процента.

Шумами скольжения переменных резисторов принято считать шумы (напряжение помех), возникающие при движении (скольжении) подвижного контакта по резистивному элементу. Причиной таких шумов являются контактная разность потенциалов между щеткой и резистивным элементом, неоднородность структуры переходного контакта и э.д.с., возникающая при быстром вращении подвижной системы. Уровень этих шумов выше уровня тепловых и токовых шумов резистора.

Под износоустойчивостью понимают способность резистора сохранять свои параметры при многократных перемещениях подвижной системы. Износоустойчивость в основном определяется материалом и формой подвижного контакта и резистивного элемента и контактным давлением. При движении происходит износ резистивного элемента и подвижного контакта, интенсивность которого возрастает с увеличением контактного давления. Однако уменьшение контактного давления способствует увеличению шумов вращения и снижению стойкости к механическим воздействиям. Количественно износоустойчивость оценивается максимально допустимым числом циклов перемещения подвижной системы, при котором параметры резистора остаются в пределах норм. Износоустойчивость прецизионных резисторов 105 - 107 циклов, но их вибрационная и ударная стойкость ниже, чем резисторов общего назначения. Регулировочные резисторы общего назначения обладают износоустойчивостью 5000 - 100000 циклов, а подстроечные - не больше 1000.


4. Постоянные резисторы


Углеродистые резисторы представляют собой тонкую пленку углерода, осажденную на основание из керамики (стержень или трубку). Углеродистые резисторы характеризуются высокой стабильностью сопротивления, низким уровнем собственных шумов, небольшим отрицательным ТКС (5-20)·10-4 1/°C, слабой зависимостью сопротивления от частоты и приложенного напряжения. Выпускаются резисторы общего назначения (С1-4, ВСа, ВС), высокочастотные (УНУ, УНУ-Ш). Для повышения стабильности в углерод добавляют бор. Бороуглеродистые резисторы (БЛП) имеют ТКС = -(0,12-0,2)10-4 1/ °C, меньший уровень шумов (не более 0,5 мкВ/В и допуск ±0.5; ±1%).

Композиционные резисторы. Резистивный элемент этих резисторов изготавливается из смеси (композиции), состоящей из проводящего компонента (сажа, графит) и органического или неорганического диэлектрика. Композиционные резисторы выпускаются пленочного и объемного видов. Пленочные резисторы изготавливают нанесением композиции на керамическую трубку или стержень. Объемные композиционные резисторы представляют собой стержни, прессованные из композиционной смеси.

Достоинством пленочных композиционных резисторов является простота их изготовления и повышенная надежность, обусловленная значительной толщиной резистивного слоя. Недостатками этого вида резисторов являются зависимость сопротивления от напряжения, низкая стабильность, большой уровень собственных шумов, большие диэлектрические потери на высокой частоте, зависимость сопротивления от частоты, температуры и влажности. Это резисторы специального назначения: высокомегаомные (С3-13, С3-14, КВМ, КЛМ), сопротивление которых лежит в пределах от 100кОМ до 1тОм, высоковольтные (С3-9, С3-12, С3-14, С3-5, КЭВ) с сопротивлением до 45ГОм и предельным напряжением до 60кВ (КЭВ), а также малогабаритные резисторы типа КИМ для микроэлементной аппаратуры.

Объемные композиционные резисторы более дешевы и просты в производстве, чем пленочные. Они менее чувствительны к кратковременным перегрузкам, характеризуются большей надежностью, особенно при работе в тяжелых климатических условиях. К ним относятся резисторы общего назначения типа С4-2, С4-3, ТВО.

Металлодиэлектрические, металлизированные и металлоокисные резисторы. Резистивный элемент этих резисторов изготавливают в виде тонкой пленки, представляющей собой микрокомпозицию из диэлектрика (стекло, керамика, полимерные материалы) и проводника (палладий, родий, двуокись олова и др.), пленки металла (вольфрама, хрома, тантала, титана) или сплавов металлов с хромом, кремнием, пленки окиси металла (чаще всего окиси олова).

Эти резисторы характеризуются высокой стабильностью, слабой зависимостью сопротивления от частоты и напряжения, теплостойкостью и влагостойкостью, малым уровнем шумов, небольшими размерами, высокой надежностью. Их недостатком является пониженная стойкость к импульсным нагрузкам, а также невозможность изготовления высокомегаомных резисторов.

На основе металлоокисного резистивного элемента изготавливают прецизионные резисторы (С2-1), которые могут работать при высоких (до 200°C) температурах, высокочастотные (МОУ, МОУ-Ш).

Металлизированные резисторы типа С6-1 - С6-9 применяют для работы в диапазоне СВЧ вплоть до частот 26 ГГц. Они используются в аттенюаторах СВЧ, в измерительных цепях и т.д. Конструктивно выполнены без выводов, за исключением резисторов типа С6-5, у которых рабочий диапазон ограничен частотой 100МГц.

Металлодиэлектрические резисторы общего назначения МЛТ и ОМЛТ наиболее широко используются в радиоэлектронной аппаратуре. Они обладают высокими электрическими, конструктивными и эксплуатационными характеристиками: диапазон номинальных значений сопротивления от 8,2 до 10 · 106 Ом; номинальная мощность рассеивания в зависимости от типоразмера - 0,125 - 2 Вт; ТКС = (5-12)·10-4 1/°C; допустимые отклонения сопротивления ±2; ±5; ±10%; масса 0,15 - 3,5 г.

Аналогичную конструкцию имеют резисторы типа МТ (обладают повышенной теплостойкостью, могут эксплуатироваться при температуре окружающей среды до 200°C), С2-33И, С2-50 (характеризуются малым допуском на номинал - ±0,5; ±1 ; ±2%; небольшим ТКС - +(1-2,5)· 10 -4 1/°C; меньшим уровнем шумов - до 1,5 мкВ/В).

Для применения в микроэлектронной аппаратуре и микросборках можно использовать резисторы Р1-4-0,25 и резисторы безвыводной конструкции Р1-11 и Р1-12, которые в схему впаивают непосредственно. Резисторы типа Р1-12 характеризуются следующими параметрами: диапазон номинальных сопротивлений 1 - 6,8·106 Ом; допуск на номинал ±5; ±1 0; ± 20%; ТКС=+(1,5-5)·10-4 1/°C; уровень собственных шумов зависит от величины сопротивления и изменяется от 1 до 50мкВ/В.

Кроме резисторов общего применения выпускают металлодиэлектрические прецизионные резисторы (С2-29В, С2-36, С2-1 и др.) и высокочастотные (С2-10, С2-34).

Прецизионные металлодиэлектрические резисторы обладают мощностью рассеяния от 0,062 до 2Вт, диапазоном номинальных сопротивлений от 1 до 20·106 Ом, допуском от ±0,05 до ± 1%; ТКС - +(0,05-10)·10-4 1/°C; уровнем шумов - от 0,5 до 5 мкВ/В.

Проволочные резисторы выполняют на цилиндрическом изоляционном основании с одно- или многослойной обмоткой. Для защиты от механических и климатических воздействий и закрепления витков все устройство покрывается лаками и эмалями или герметизируется.

Проволочные резисторы характеризуются высокой стабильностью сопротивления, низким уровнем шумов, большой номинальной мощностью, высокой точностью сопротивления.

В зависимости от назначения проволочные резисторы можно разделить на резисторы общего назначения (нагрузочные) и прецизионные.

Нагрузочные резисторы имеют номинальную мощность от 3 до 100Вт и номинальное сопротивление от 0,066 до 50·103 Ом. Применяют такие резисторы в качестве делителей напряжения, различных нагрузок, поглотительных и балластных сопротивлений.

Прецизионные резисторы характеризуются меньшей номинальной мощностью от 0,125 до 10Вт, большим диапазоном номинальных значений от 1 до 106 Ом, допуском от ±0,05 до ±2,0%, ТКС - (0,01-2)·10-4 1/°C.

Для использования в микроэлектронной аппаратуре и микросборках выпускают металлофольговые прецизионные резисторы С5-62, которые предназначены для функциональной подгонки высокоточных ГИС. Эти резисторы характеризуются диапазоном номинальных значений от 30 до 10·103 Ом, допуском от ±0,05 до ±1,0%; ТКС - +(0,2-0,3)·10-4 1/°C.



5. Наборы резисторов


Наборы резисторов предназначены для использования в устройствах вычислительной, измерительной техники и другой радиоэлектронной аппаратуре.

По функциональному назначению наборы резисторов подразделяют на декодирующие матрицы и последовательные делители напряжения.

В декодирующих матрицах значения сопротивлений резисторов изменяются по закону R-2R, R-2R-4R-8R и др.

Наборы резисторов характеризуются номинальным сопротивлением резисторов, коэффициентом деления, допуском на номинал, ТКС и разбалансом ТКС (т.е. разностью между ТКС двух резисторов), входным напряжением (чаще всего от 2,0 до 30В, для некоторых типов наборов резисторов до 1500В), выходным напряжением, мощностью рассеяния одного резистора и набора в целом (от 0,3 до 1,5 Вт), разрядностью для декодирующих матриц, паразитной емкостью между резисторами; динамическими параметрами - временем установления выходного напряжения (0,1-5мкс) или верхней граничной частотой (до 60МГц).

Наборы резисторов изготавливают на основе тонкопленочных резисторов (серии 301-320), толстопленочных (НР1-1 - НР1-11), металлофольговых (НР2-2), проволочных (НС5-4-1), керметных подстроечных (НР1-9, НРП1-1).



Литература


1.       Суриков В.С. – Основы электродинамики – М. «Протон» - 2000 г.

2.       Карков И.С. – Физика элементарных частиц. – М. – 1999 г.

3.       Синджанов И.К. Электродинамика – М. 1998 г.

4.       Электротехнические материалы. Справочник / В.Б. Березин, Н.С. Прохоров, А.М. Хайкин. - М.: Энергоатомиздат, 1993. - 504с.

5.       Рычина Т.А., Зеленский А.В. Устройства функциональной электроники и электрорадиоэлементы . - М.: Радио и связь, 1999. - 352с.



Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.