Рефераты. Устройство аппаратного шифрования данных с интерфейсом USB

1.4.2       Алгоритмы шифрования с открытым ключом

Назначение их то же, что и у блочных шифров – сделать информацию непонятной всякому постороннему. Основное отличие состоит в использовании для операций шифрования двух разных, но взаимосвязанных ключей однонаправленного действия, один из которых может зашифровать информацию, но расшифровать её может только другой.

Благодаря этой особенности некоторые алгоритмы с открытым ключом совместно с хэш-функцией могут применяться и для другой цели: для выработки имитовставки (электронной цифровой подписи), подтверждающей авторство информации. Асимметричные алгоритмы основаны на ряде математических проблем (т.н. NP-полных задач), на которых и базируется их стойкость. Пока учёные-математики не найдут решение этих проблем, данные алгоритмы будут стойки. В этом заключается ещё одно отличие симметричного и асимметричного шифрования: стойкость первого является непосредственной и научно доказуемой, стойкость второго – феноменальной, т.е. основанной на некоем явлении, и научно не доказана (так же, как не доказана их нестойкость).

RSA

Это криптографическая система с открытым ключом, обеспечивающая оба механизма защиты: шифрование и цифровую подпись. Криптосистема RSA была разработана в 1977 году и названа в честь авторов: Рональда Ривеста, Ади Шамира и Леонарда Адельмана.

Принцип действия RSA состоит в следующем. Для начала сгенерируем пару ключей:

1.     Возьмём два больших случайных простых числа p и q (т.е. числа делящихся только на себя и на 1) приблизительно равной разрядности, и вычислим их произведение


n = p∙q                                                                                               (1.7)


2.     Выберем число e, взаимно простое с произведением (p–1)*(q–1). Взаимно простыми называют числа, у которых нет общих множителей кроме 1 (например, 15 и 28 – являются, 15 и 27 – нет: кроме 1 их общий множитель – 3).

3.     Вычисляется число d, взаимно простое с n.

 

d = e-1mod((p–1)∙(q–1))                                                                     (1.8)


Числа e и n становятся открытым ключом. Число d – закрытым. Чтобы создать шифротекст c из сообщения m, необходимо выполнить:

 

c = me mod n                                                                                     (1.9)


Чтобы расшифровать полученный шифротекст, необходимо выполнить:

 

m = cd mod n                                                                                     (1.10)


Пока не найдены эффективные методы разложения чисел на множители, невозможно факторизовав n получить p и q, а, следовательно, и показатель закрытого ключа d. Таким образом, надежность криптосистемы RSA базируется на трудноразрешимой задаче разложения n на множители. Несмотря на фактическую сложность разложения больших чисел на множители, научно не доказано, что факторизация является трудной, или NP-полной, задачей. Доказательств обратного тоже никто не представил.


1.4.3Выбор алгоритма шифрования

Выбирая алгоритм шифрования, который будет использоваться в создаваемой криптосистеме, прежде всего, необходимо обратить внимание на следующие характеристики алгоритмов:

·                    Криптостойкость. Алгоритм должен быть тщательно проанализирован мировым криптографическим сообществом в течение длительного времени (не менее пяти лет лет) [1] и признан криптостойким к различным видам атак;

·                    Длина ключа. Ключ, используемый в алгоритме шифрования, должен быть не короче 256 бит для алгоритмов симметричного шифрования и 2048 бит для алгоритмов с открытым ключом. Это сделано для того, чтобы шифр невозможно было вскрыть методом прямого перебора (грубой силой) в ХХI веке;

·                    Скорость шифрования. Предполагается взаимодействие устройства с компьютером через полноскоростной интерфейс USB2.0.(12 Мбит/сек). Поэтому скорость шифрования данных по выбранному алгоритму должна быть настолько высокой, чтобы не возникало простоев при передаче данных на максимальной скорости.

·                    Ресурсоемкость. Алгоритм должен быть оптимизирован для аппаратной реализации. Количество оперативной памяти и необходимая производительность микропроцессора, должны находиться в рамках, которые ограничивают микроконтроллеры общего применения.

Выбор осуществлялся из следующего набора алгоритмов: RC6, Rijndael(Рэндал), Serpent и Twofish, потоковые шифры RC4 и WAKE, алгоритм Blowfish, разработанный известным криптоаналитиком Брюсом Шнайером, а также алгоритм с открытым ключом – RSA.

Все вышеперечисленные алгоритмы в различной степени отвечают предъявляемым к ним требованиям. Для реализации RSA, необходимы операции (возведение в степень) над большими числами, для быстрого выполнения которых в проекте придется применять специализированные микросхемы. Алгоритмы с открытым ключом не применимы из-за низкой скорости. Потоковые шифры лучше не использовать. Они лучше подходят для шифрования потока информации. Например, пакетов информации в компьютерных сетях, либо разговоров по телефонной линии.

Поскольку разрабатываемое устройство предназначено для шифрования файлов, необходимо использовать блочный шифр, а не потоковый. Два кандидата на эту роль – Rijndael и Blowfish. Создатель Blowfish, Брюс Шнайер рекомендует этот шифр для использования в системах, построенных на основе микроконтроллера. Длина ключа используемого в Blowfish переменная, с верхним пределом 448 бит (в Rijndael максимум – 256 бит). К тому же на алгоритм Blowfish отсутствует лицензия и его можно свободно использовать. Поэтому в устройстве будет реализован алгоритм Blowfish.


1.5             Описание алгоритма Blowfish


Blowfish – это алгоритм, предназначенный для реализации в микроконтроллерах [1]. При проектировании Blowfish использовались следующие критерии:

·                    Скорость. Blowfish шифрует данные на 32-битовых микропроцессорах со скоростью 26 тактов на байт.

·                    Компактность. Blowfish может работать менее, чем в 5 Кбайт памяти.

·                    Простота. Blowfish использует только простые операции: сложение, XOR и выборка из таблицы по 32-битовому операнду. Анализ его схемы несложен, это уменьшает количество ошибок при реализации.

·                    Настраиваемая безопасность. Длина ключа Blowfish переменна и может достигать 448 битов.

Blowfish оптимизирован для тех приложений, в которых нет частой смены ключей. При реализации на 32-битовых микропроцессорах с большим кэшем данных, Blowfish заметно быстрее DES. Blowfish не подходит для использования в приложениях с частой сменой ключей, например, при коммутации пакетов, или для использования в качестве однонаправленной хэш-функции.

Blowfish представляет собой 64-битовый блочный шифр с ключом переменной длины. Алгоритм состоит из двух частей: развертывание ключа и шифрование данных. Развертывание ключа преобразует ключ длиной до 448 битов в несколько массивов подключей, общим объемом 4168 байтов.

Шифрование по алгоритму Blowfish состоит из функции преобразования данных, последовательно выполняемой 16 раз. Каждый этап состоит из зависимой от ключа перестановки и зависимой от ключа и данных подстановки. Используются только сложения и XOR 32-битовых слов. Единственными дополнительными операциями на каждом этапе являются четыре извлечения данных из индексированного массива.

В Blowfish используется много подключей. Эти подключи должны быть рассчитаны до начала шифрования или дешифрирования данных.

P-массив состоит из 18-ти 32-битовых подключей:



Каждый из четырех 32-битовых S-блоков содержит 256 элементов:



Метод, используемый при вычислении этих подключей, описан в этом разделе ниже.


Рис. 1.7 – Алгоритм Blowfish



Blowfish является сетью Фейстела (Feistel), состоящей из 16 этапов. На вход подается 64-битовый элемент данных x.

Алгоритм шифрования:

·                    Элемент x разбивается на две 32-битовых половины:  и ;

·                    Для этапов с первого по шестнадцатый, выполняется:


                                                                                    (1.11)

                                                                                       (1.12)


Переставить  и  (кроме последнего этапа);

·                    В последнем этапе, производится:


                                                                                   (1.13)

                                                                                   (1.14)


·                    Объединяются элементы  и  ;


Рис. 1.8 – Функция F


Функция F (рис.1.8) представляет собой последовательность следующих действий:

·                          Разделить  на четыре 8-битовых части: a, b, c и d;

·                     Выполнить над a,b,c,d :

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.