Рефераты. Устройства ввода/вывода информации. Устройства хранения данных

Жидкокристаллические экраны с пассивной матрицей

В жидкокристаллических мониторах с пассивной матрицей, которая встречается в ста­рых и дешевых портативных компьютерах, яркостью каждой ячейки управляет электриче­ский заряд (точнее, напряжение), протекающий через транзисторы, номера которых равны номерам строки и столбца данной ячейки в матрице экрана. Количество транзисторов (по строкам и столбцам) и определяет разрешение экрана. Например, экран с разрешением 1024x768 содержит 1024 транзисторов по горизонтали и 768 по вертикали. Ячейка реаги­рует на поступающий импульс напряжения таким образом, что поворачивается плоскость поляризации проходящей световой волны, причем угол поворота тем больше, чем выше напряжение. Полная переориентация всех кристаллов ячейки соответствует, например, состоянию включено и определяет максимальный контраст изображения — разницу ярко­сти по отношению к соседней ячейке, которая находится в состоянии выключено. Таким образом, чем больше перепад в ориентации плоскостей поляризации соседних ячеек, тем выше контраст изображения.

На ячейки жидкокристаллического монитора с пассивной матрицей подается пульси­рующее напряжение, поэтому они уступают по яркости изображения жидкокристалличе­ским мониторам с активной матрицей, в каждую ячейку которых подается постоянное напряжение. Для повышения яркости изображения в некоторых конструкциях использу­ется метод управления, получивший название двойное сканирование, и соответствующие ему устройства — жидкокристаллические мониторы с двойным сканированием (double-scan LCD). Экран разбивается на две половины (верхнюю и нижнюю), которые работают независимо, что приводит к сокращению интервала между импульсами, поступающими на ячейку. Двойное сканирование не только повышает яркость изображения, но и сни­жает время реакции экрана, поскольку сокращает время создания нового изображения.

Поэтому жидкокристаллические мониторы с двойным сканированием больше подходят для создания быстро изменяющихся изображений, например телевизионных.

Недостатки жидкокристаллических мониторов

• Если вам приходится часто переключать экранное разрешение (например, раз­работчикам Web-приложений это нужно для проверки конечного продукта), сме­на разрешения жидкокристаллического монитора осуществляется одним из двух представленных далее методов. Некоторые старые мониторы уменьшают экранное изображение для использования только пикселей нового разрешения, в результате чего для вывода изображения 640x480 используется определенная область экрана монитора с разрешением 1024x768. В то же время новые жидкокристаллические мониторы имеют возможность растягивать изображение на весь экран. Масштаби­рование стало популярной функцией после того, как Digital Display Work Group определила в изданной спецификации, что масштабирование должно поддержи­ваться как жидкокристаллической панелью, так и видеоадаптером. К сожалению, масштабирование приводит к уменьшению (иногда существенному) четкости изоб­ражения жидкокристаллического монитора.

•Выбор аналогового жидкокристаллического монитора не только позволяет немно­го сэкономить, но и дает возможность использовать имеющийся видеоадаптер. Однако это может сказаться на качестве выводимого на экран текста или изображе­ния, что связано с преобразованием цифрового сигнала компьютера в аналоговый (в видеоадаптере) и обратно в цифровой (в жидкокристаллическом мониторе). Это преобразование зачастую приводит к 'флуктуации, или плаванию пикселей, проис­ходящему при беспорядочном включении и выключении смежных ячеек жидко­кристаллической панели из-за невозможности определения порядка инициализации ячеек. Большинство мониторов поставляются со специальным программным обес­печением, которое позволяет улучшить качество выводимого изображения, но не дает возможности устранить эту проблему в полной мере.

•Цифровые жидкокристаллические панели, подключенные к совместимым видео­адаптерам, позволяют избежать проблем, связанных с преобразованием сигнала. К сожалению, многие существующие видеоадаптеры не поддерживают цифровые сигналы. Некоторые цифровые жидкокристаллические панели рассчитаны на работу лишь с определенными цифровыми видеоадаптерами, что приводит к повышению их стоимости.

• Высококачественные цифровые или аналоговые жидкокристаллические панели ве­ликолепно подходят для отображения текста и графики. Тем не менее, в отличие от ЭЛТ-мониторов, они не так хорошо справляются с отображением очень светлых или темных участков изображения.

• Ахиллесова пята жидкокристаллических панелей — время реакции пикселей (вре­мя послесвечения). Большое время реакции (более 25 мс) приводит к тому, что при полноэкранном воспроизведении видео, трехмерных игр, анимации, а также быстром просмотре текста изображение смазывается. Обращайте внимание на мо­ниторы, в которых используется жидкокристаллический материал, обеспечивающим быстрое переключение пикселей. Например, такой материал компании ViewSonic называется 3X-LCD.

Параметры мониторов

Разные принципы, разные технологии... Однако, какой бы тип мо­нитора вы ни выбрали для своего домашнего или офисного ПК, при покупке вам придется обратить внимание на ряд важных параметров.

1) Размер диагонали экрана в дюймах (1 дюйм — это около двух с поло­виной сантиметров).

Учтите, что диагональ видимого вами изображения для стандартного ЭЛТ-монитора всегда окажется... на целый дюйм меньше заявленной величины. 15-дюймовый ЖК-мони­тор соответствует 17-дюймовому на основе ЭЛТ.

2) Величина экранного «зерна». Второй важный показатель — величина минимальной точки (пикселя) экрана. Эта ве­личина напрямую влияет на качество получаемой картинки: чем зерно больше, тем «глубже» изображение.

3) Разрешающая способность. Эта величина показывает, сколько ми­нимальных элементов изображения — «точек» — может уместиться на экране вашего монитора.

Разрешающую способность описывают две величины — количество точек по вертикали и по горизонтали. Изменяется она в ком­пьютере не плавно, как и количество цветов, а как бы прыгает со сту­пеньки на ступеньку, с режима на режим:

•640x480 (стандартный режим для 14-дюймовых мониторов);

•800x600 (стандартный режим для 15-дюймовых мониторов);

•1024x768 (стандартный режим для 17-дюймовых мониторов);

•1152x864 (стандартный режим для 19-дюймовых мониторов);

•1280x1024 (стандартный режим для 20-дюймовых мониторов);

•1600x1200 (стандартный режим для 21-дюймовых мониторов).

4) Максимальная частота развертки (Refresh Rate) — эту величину можно грубо определить как аналог «частоты обновления кадров» в кино. Чем выше частота развертки — тем меньше будет «рябить» экран монитора. Как правило, для комфортной работы необходимо, что­бы частота вертикальной развертки составляла не менее 85 Гц, т. е., чтобы изображение на экране обновлялось с частотой не менее 85 раз в секунду.

5) Возможности настройки и коррекция изображения. Все современные устройства снабжены специальным цифровым управлением, позволя­ющим вручную отрегулировать множество параметров:

•Пропорциональное сжатие/растяжку изображения по горизонта­ли и вертикали.

•Сдвиг изображения по горизонтали или вертикали.

•Коррекция «бочкообразных искажений» (т. е. таких, когда края изображения на экране слишком выпуклы или, наоборот, вогну­ты).

•Трапециевидные и параллелограммные искажения, также связан­ные с «геометрией» изображения.

•Цветовую «температуру», соотношение основных экранных цве­тов — красного, зеленого и синего.

6) Тип «теневой маски».

В современных мониторах используется несколько типов решеток. Первый, самый простой — точечная инваровая «маска»-сеточка с кро­хотными отверстиями через которые и просеива­ются лучи ЭЛТ.

В более дорогих и совершенных мониторах используется второй тип маски — апертурная решетка, состоящая из множества тонких, верти­кально натянутых металлических нитей. Отличаются эти мониторы качеством, контрастностью и «сочностью» изображения.

7) Вид кинескопа.

·        Мониторы с плоским экраном. Кинескопы этого типа обеспечивают самое реалистическое и привычное для глаз человека изображение.

·        Выпуклый экран.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Принтер

Одно из назначений компьютера — создание напечатанной версии документа, или так называемой твердой копии. Именно поэтому принтер является необходимым аксессуаром компьютера.

Технологии печати

На сегодняшний день существует три основные технологии печати.

• Лазерная. Лазерный принтер работает следующим образом: на фоточувствительном барабане с помощью луча лазера создается электростатическое изображение страницы. Помешенный на барабан специально окрашенный порошок, называемый тонером, "прилипает" только к той области, которая представляет собой буквы или изображение на странице. Барабан поворачивается и прижимается к листу бумаги, перенося на нее тонер. После закрепления тонера на бумаге получается готовое изображение. Подобная технология используется в копировальных аппаратах.

• Струйно-чернильная. В струйных принтерах, ионизированные капельки чернил через сопла распыляются на бумагу. Распыление происходит в тех местах, где необходимо сформировать буквы или изображения.

• Матрица точек. В матричных принтерах используется группа круглых игл. Которые ударяют по листу бумаги через красящую ленту. Эти иглы собраны в прямоугольную сетку, называемую матрицей. При нажатии определенных игл в матрице формируются различные символы или изображения.

Наилучшее качество печати обеспечивают лазерные принтеры, за ними следуют струйные, а затем матричные.

Память принтера

В каждом принтере есть микросхемы памяти, а лазерные и струйные принтеры, помимо этого, имеют еще и встроенный процессор, поэтому можно сказать, что принтер — что специализированный компьютер. Память в принтере служит буфером для помещения данных задания печати, она предназначена для хранения данных в процессе создания изображения, шрифтов и команд, а также для временного хранения контуров шрифтов и других данных. Объем памяти в лазерных и струйных принтерах— это ''зеркало" его возможностей.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.