Рефераты. Устройства передачи информации по сети электропитания

Устройства передачи информации по сети электропитания

РЕФЕРАТ


Пояснительная записка к дипломной работе, 36 рис., 10 табл., 25 источников.

Объект работы – устройство передачи информации по сети электропитания. Передающая часть.

Цель проекта – разработка устройства передачи информации по сети электропитания для организации локальных компьютерных сетей. Разработка передающей части устройства.

В результате проведения дипломной работы была проведена разработка физического уровня передающей части устройства передачи информации по сети электропитания. Проведен анализ и выбор способов кодирования и модуляции. Разработан алгоритм работы передающей части устройства. Произведен выбор элементной базы.

СИСТЕМА ПЕРЕДАЧИ ДАННЫХ, СПЕКТР, DSP-КОНТРОЛЛЕР, УСТРОЙСТВО ПРИСОЕДИНЕНИЯ, ТРЕЛЛИС-КОДИРОВАНИЕ, МОДУЛЯЦИЯ, СКОРОСТЬ ПЕРЕДАЧИ, ИНФОРМАЦИОННАЯ СКОРОСТЬ, ВРЕДНЫЕ И ОПАСНЫЕ ПРОИЗВОДСТВЕННЫЕ ФАКТОРЫ, КОНКУРЕНТОСПОСОБНОСТЬ.


СОДЕРЖАНИЕ


ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ, СОКРАЩЕНИЙ И ТЕРМИНОВ

ВВЕДЕНИЕ

1. ОБЗОР АНАЛОГИЧНЫХ УСТРОЙСТВ

2. ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК РЕАЛЬНОГО КАНАЛА СВЯЗИ. ОБОСНОВАНИЕ ВЫБОРА ДИАПАЗОНА ЧАСТОТ РАБОТЫ СИСТЕМЫ

3. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ

4. АНАЛИЗ МЕТОДОВ КОДИРОВАНИЯ

4.1 Линейные методы кодирования

4.2 Сверточные коды

5. ОБЗОР ВИДОВ МОДУЛЯЦИИ

6. ОПИСАНИЕ ВНЕШНЕГО ИНТЕРФЕЙСА

6.1 Расчет полосовых фильтров

6.2 Описание адаптивного эквалайзера

6.3 Описание эхокомпенсатора

6.4 Описание устройства присоединения

7. ОПИСАНИЕ АЛГОРИТМА РАБОТЫ ПЕРЕДАЮЩЕЙ ЧАСТИ УСТРОЙСТВА. ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ

8. ОХРАНА ТРУДА

8.1 Анализ условий труда

8.1.1 Декомпозиция системы «человек – машина - среда»

8.2 Анализ вредных факторов

8.3 Техника безопасности

8.4 Производственная санитария и гигиена труда

8.5 Пожарная профилактика

9. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

9.1 Характеристика изделия

9.2 Исследование и анализ рынков сбыта

9.2.1 Параметрическая сегментация рынка

9.3 Затраты на разработку устройства

9.4 Расчет договорной цены изделия

9.5 Анализ безубыточности производства устройства

9.6 Расчет ожидаемой прибыли

9.7 Оценка конкурентоспособности устройства

9.7.1 Анализ конкурентоспособности приемной части устройства по техническим параметрам

9.7.2 Расчет интегрального показателя конкурентоспособности

ВЫВОДЫ

ПЕРЕЧЕНЬ ССЫЛОК

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, СИМВОЛОВ, ЕДИНИЦ, СОКРАЩЕНИЙ И ТЕРМИНОВ


BPSK (Binary Phase Shift Keying) – двоичная фазовая манипуляция;

DSP (Digital Signal Processor) – сигнальный цифровой процессор;

DPSK (Differential Phase Shift Keying) – относительная фазовая модуляция;

FQPSK (Feher Quadrature Phase Shift Keying) – запатентованная Феером квадратурная фазовая манипуляция;

FSK (Frequency Shift Keying) – частотная модуляция;

FBPSK ((Feher Binary Phase Shift Keying) - запатентованная Феером двоичная фазовая манипуляция;

GMSK (Gaussian Minimum Shift Keying) – запатентованная гауссовская модуляция с минимальным частотным сдвигом;

IRQ – шина прерываний;

MSK – модуляция с минимальным частотным сдвигом;

NRZ (Nonreturn to Zero) – код без возврата к нулю;

O-QPSK (Offset Quadrature Phase Shift Keying) – 4-позиционная модуляция со сдвигом;

QAM (Quadrature Amplitude Modulation) – квадратурная амплитудная модуляция;

QPSK (Quadrature Phase Shift Keying) – квадратурная фазовая манипуляция;

RZ (Return to Zero) – код с возвратом к нулю;

SC (Signal Coustellation) – сигнальное созвездие;

TCM – Модуляция с решетчатым кодированием;

АБГШ – аддитивный белый гауссовский шум;

АЦП – аналого-цифровой преобразователь;

ДС – дифференциальная система;

ЛС – линия связи;

МП – микропроцессор;

ОЗУ – оперативное запоминающее устройство;

ОУ – операционный усилитель;

ПЗУ – постоянное запоминающее устройство;

ПК – персональный компьютер;

ППЗУ – перепрограммируемое постоянное запоминающее устройство;

ПУ – периферийное устройство;

ПФ – полосовой фильтр;

СКК – сигнально-кодовая конструкция;

УП – устройство присоединения;

ФВЧ – фильтр верхних частот;

ФНЧ – фильтр нижних частот

ЦАП – цифро-аналоговый преобразователь;

ША – шина адреса;

ШД – шина данных.


ВВЕДЕНИЕ


Компьютерные сети прочно закрепились во многих отраслях деятельности человека. Поэтому многие производители компьютерной техники, наряду с выпуском компьютеров и периферийных устройств, наладили выпуск сетевого оборудования и программного обеспечения. При этом для объединения в сеть нескольких компьютеров и периферийных устройств, они используют различные технические решения. Однако основные принципы обмена информацией между компьютерами или компьютерами и периферийными устройствами остаются везде неизменными. Во всех существующих технологиях есть свои преимущества и недостатки. И поэтому каждая технология находит применение в тех ситуациях, где она наиболее удовлетворяет потребностям пользователей.

При современном уровне развития компьютерной техники и сетевых технологий, к компьютерным сетям предъявляются жесткие требования. Компьютерная сеть должна обеспечивать требуемую для конкретных условий скорость передачи; так же она должна быть мобильной, с большим количеством точек доступа, при этом не должна требоваться прокладка кабеля; сеть должна иметь простое администрирование; она должна обеспечивать высокую надежность при простых технических решениях; сеть должна поддерживать все возможные типы сетевого оборудования и при всем этом она должна быть дешевой.

При всеобщей глобальной компьютеризации, как простого населения, так и предприятий, организаций и спецслужб появилась необходимость организации временных компьютерных сетей в очень короткое время. В основном такая необходимость возникает на предприятиях и организациях занятых исследовательской деятельностью или раздельным выполнением одного проекта, а так же у организаций занятых ликвидацией чрезвычайных ситуаций.

Одним из возможных вариантов организации временных компьютерных сетей является система передачи данных по энергосетям, физический уровень передающей части которой разрабатывается в данной дипломной работе.

В дипломной работе будет разработана передающая часть устройства передачи данных по энергосетям.

Раздел "Охрана труда" выполняется с целью создания безопасных условий труда при работе с компьютерной техникой, в частности с разрабатываемым устройством.

В экономической части диплома будет произведен расчет себестоимости проектируемого устройства и анализ конкурентоспособности.


1. ОБЗОР АНАЛОГИЧНЫХ УСТРОЙСТВ


В настоящее время компьютерные технологии и в частности компьютерная связь стали неотъемлемой частью производственного процесса и жизнедеятельности человека. Многие производители компьютерной техники, наряду с выпуском компьютеров и периферийных устройств, наладили выпуск сетевого оборудования и программного обеспечения. При этом, для объединения в сеть нескольких компьютеров и периферийных устройств, они используют различные технические решения. Однако основные принципы обмена информацией между компьютерами или компьютерами и периферийными устройствами остаются везде неизменными.

Для обмена данными между компьютером и периферийным устройством (ПУ) в компьютере предусмотрен внешний интерфейс, то есть соединения между компьютером и периферийным устройством, а так же набор правил обмена информацией. Интерфейс реализуется со стороны компьютера совокупностью аппаратных и программных средств: контроллером ПУ и специальной программой, управляющей этим контроллером – драйвером ПУ. Периферийное устройство использует внешний интерфейс компьютера не только для приема информации, но и для передачи информации в компьютер, то есть обмен данными по внешнему интерфейсу, как правило, является двунаправленным. Программа, выполняемая процессором, может обмениваться данными с помощью команд ввода/вывода с любыми модулями, подключенными к внутренней шине компьютера, в том числе с контроллерами ПУ. Контроллеры ПУ принимают команды и данные от процессора в свой внутренний буфер (регистр или порт), затем выполняют необходимые преобразования этих данных и команд в соответствии с форматами, понятными периферийному устройству, и выдают их на внешний интерфейс.

Ethernet – самая распространенная на сегодняшний день технология локальных сетей. В широком смысле Ethernet – это целое семейство технологий, включающее различные форменные и стандартные варианты. Почти все виды технологий Ethernet используют один и тот же метод разделения среды передачи данных – метод случайного доступа CDMA/CD, который определяет облик технологии в целом. Важным явлением в сетях Ethernet является коллизия – ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Наличие коллизий – это неотъемлемое свойство сетей Ethernet, являющееся следствием принятого случайного метода доступа. Возможность четкого распознавания коллизий обусловлена правильным выбором параметров сети, в частности соблюдением соотношения между минимальной длиной кадра и максимально возможным диаметром сети. На характеристики производительности сети большое значение оказывает коэффициент использования сети, который отражает загруженность сети. При значениях этого коэффициента свыше 50% полезная пропускная способность резко падает: из-за роста интенсивности коллизий, а так же увеличения времени ожидания доступа к среде. Максимально возможная пропускная способность сегмента Ethernet в кадрах в секунду достигается при передаче кадров минимальной длины и составляет 14880 кадр/с. При этом полезная пропускная способность сети составляет всего 5,48 Мбит/с, что лишь немного более половины от номинальной пропускной способности – 10 Мбит/с. Технология Ethernet поддерживает 4 разных типа кадров, которые имеют общий формат адресов узлов. Существуют формальные признаки, по которым сетевые адаптеры автоматически распознают тип кадра. В зависимости от типа физической среды существуют различные спецификации: 10Base-5, 10Base-2, 10Base-Т, FOIRL, 10Base-FL, 10Base-FB. Для каждой спецификации определяются тип кабеля, максимальные длины непрерывных отрезков кабеля, а так же правила использования повторителей для увеличения диаметра сети: правило «5-4-3» для коаксиальных вариантов сети, и правило «четырех хабов» для витой пары и оптоволокна.

Технология Token Ring развивается в основном компанией IBM. В сетях Token Ring используется маркерный метод доступа, который гарантирует каждой станции получение доступа к разделяемому кольцу в течение оборота маркера. Метод доступа основан на приоритетах: от 0 до 7. Станция сама определяет приоритет текущего кадра и может захватить кольцо только в том случае, когда в кольце нет более приоритетных кадров. Сети Token Ring работают на двух скоростях 4 и 16 Мбит/с и могут использовать в качестве физической среды экранированную витую пару, неэкранированную витую пару, а так же оптоволокно. Максимальное количество станций в кольце – 260, а максимальная длина кольца – 4 км. Технология Token Ring обладает элементами отказоустойчивости. За счет обратной связи кольца одна из станций - активный монитор – непрерывно контролирует наличие маркера, а так же время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной инициализации, а если она не помогает, то для локализации неисправного участка кабеля или неисправной станции используется процедура beaconing. В сети Token Ring станции в кольцо объединяют с помощью концентраторов (MSAU). Пассивный концентратор выполняет роль кроссовой панели, которая соединяет выход предыдущей станции в кольце со входом последующей. Максимальное расстояние от станций до MSAU – 100 м для STP и 45 м для UTP. Активный монитор выполняет в кольце так же роль повторителя – он ресинхронизирует сигналы, проходящие по кольцу. Кольцо может быть построено на основе активного концентратора MSAU, который в этом случае называется повторителем. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец [1].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.