Рефераты. Трансформатор питания

1. Зная величину , выбираем сталь марки Э310 с толщиной лент .

2. Определяем мощность вторичной обмотки  (3.1)


; (3.1)

.


По известным величинам  и  для стержневого трансформатора с двумя катушками определим [1, П12] ориентировочное типоразмер магнитопровода, нужные параметры которого заносим в табл.1.3


Таблица 1.3 - Основные параметры магнитопровода ПЛ 12,5X25-32

Размеры, мм

Активна площадь сечения магнитопровода, см2

Средняя длина магнитной силовой линии, см

Масса магнитопровода, г

Ориентировочная мощность трансформатора, ВА, при частоте f=50Гц

Средняя длина витка, см

a

b

c

L

h

H

12.5

25

20

45

32

55

2.76

13.8

301

33.5

10.3


3. Находим номинальный ток в первичной обмотке (3.2)

; (3.2)


Значения  и  определяем по [1, рис.34]: , .

Тогда:


.


4. Принимаем для холоднокатаной стали Э310  [1] .

5. Определяем потери в стали для индукции  (3.3)


, (3.3)


где  - удельные потери в стали [1, рис.35а], .


.


6. Находим активную составляющую тока холостого хода  по формуле (3.4)


; (3.4), .


7. Находим намагничивающую мощность, исходя из удельной реактивной мощности  [1, рис.35б] и массы стали  по формуле (3.5)

; (3.5)

.


8. Находим реактивную составляющую тока холостого хода  по формуле (3.6)


; (3.6)

.


9. Находим по формуле (3.7) ток холостого хода


; (3.7)

.


10. Определяем ток холостого хода  (3.8) в% при


; (3.8)

.


11. Определяем ориентировочное падения напряжения ,  и  из [1, табл.15]


;

.

12. Находим число витков ,  и  по формулам (3.9) и (3.10). При последовательном соединении обмоток на стержнях напряжение каждой из катушек будет в два раза меньше


; (3.9)

; (3.10)

витков;

витков;

витков.


13. Находим плотность тока , исходя из величин ,  и конструкции трансформатора по [1, табл.14] .

Для стержневого трансформатора рекомендуется выбирать плотность тока , исходя из (3.11)


э;

.


14. Определяем ориентировочное значение проводов . Выбираем марку проводов ПЭВ-1. А затем по [1, П14] уточняем их стандартные сечения и выписываем нужные параметры. Полученные данные заносим в табл.1.4

Таблица 1.4 - Результаты выбора провода марки ПЭВ-1

Обмотка

s, мм2

dпр, мм

dиз, мм

Sпр, мм2

r’, Ом/мм

Gм1, кг

Gм1’, кг

I

0,4267

0,74

0,8

0,4301

40,7

3,82

3,9

II1

0,7843

1

1,08

0,7854

22,4

6,98

7,12

II2

0,4183

0,74

0,8

0,4301

40,7

3,82

3,9


15. Уточняем фактические плотности тока для каждой обмотки по выбранным стандартным сечениям проводов (3.11)


; (3.11)

;

;

.


16. Определяем испытательные напряжение обмоток [1] , т.к .

17. Производим конструктивный расчет обмоток.

а) Выбираем сборную конструкцию каркаса с толщиной стенок и щек 0,5мм; вид намотки - рядами, т.к провод достаточно толстый; выбираем цельные концентрические обмотки.

б) Определяем вид изоляции и ее толщину согласно рекомендациям, изложенных в [1] и [1, рис.32]:


 - толщина гильзы с одним слоем бумаги К-12;

 -один слой бумаги ЭИП-50;

 - два слоя К-12;

 -один слой бумаги К-12;

 - два слоя К-12;

 -один слой бумаги ЭИП-50;

 - два слоя К-12 + батистовая лента (0,16мм);

;

;

.


в) Определяем осевую длину обмотки  по формуле (3.12)


; (3.12)

.


г) Находим число витков  в одном слое (3.13)


, (3.13)


где  - коэффициент укладки, учитывающий неплотное прилегание витка к витку и заход междуслоевой изоляции на щеку каркаса. Согласно [1, табл.16] ; ; .


витка;

витка;

витка.


д) Определяем число слоев каждой обмотки по формуле (3.14)


; (3.14)

;

;

.


е) Находим радиальные размеры обмоток для каркасной конструкции и концентрического выполнения обмоток. Если межслоевая изоляция прокладывается через каждый слой, то толщина первичной и вторичных обмоток находится согласно (3.15)


; (3.15)

;

;

.


ж) Находим радиальный размер катушки по формуле (3.16)


, (3.16)


где  - коэффициент выпучивания при намотки и после пропитки, определяем согласно [1, табл.1] .


.


з) Определяем расстояние между катушкой и сердечником  согласно формуле (3.17)


; (3.17), ,

что допустимо.

18) Определяем потери в меди.

а) Находим средние длины витков по формулам (3.18) - (3.20)


; (3.18)

;

; (3.19)

;

; (3.20)

.


б) Находим массу меди в каждой из обмоток (3.21)


; (3.21)

;

;

.


Находим массу проводов в каждой из обмоток (3.22)


; (3.22)

;

;


Определим суммарную массу проводов в трансформаторе (3.23)


; (3.23)

.


в) Находим потери в каждой из обмоток (3.24), считая, что повод ПЭВ-1 нагревается до температуры


; (3.24)

;

;

.


Находим суммарные потери в меди  (3.25)


; (3.25)

.


19) Проверяем тепловой режим.

а) Определяем тепловые сопротивления:

тепловое сопротивление катушки (3.26)


, (3.26), где

;

.

.


тепловое сопротивление границы катушка - среда (3.27)

, (3.27)

где

;

.


тепловое сопротивление границы сердечник - среда (3.28)


 (3.28)

где;

;

;

;

;

.

.


тепловое сопротивление гильзы (3.29)


, (3.29)

где ;

;

 - зазор между катушкой и сердечником.

.


б) Определяем величину теплового потока катушка - сердечник (3.30)


 (3.30)

.


в) Определяем тепловое сопротивление катушки от максимально нагретой области до гильзы по формуле (3.31):


; (3.31)

.


Если тепловое сопротивление  меньше нуля, то необходимо найти (3.32)


; (3.32)

.


г) Определяем величину максимального превышения температуры катушки по формуле (3.33) при

; (3.33)

.


д) Определяем, исходя из , максимальную температуру, до которой нагреются обмотки трансформатора (3.34)


; (3.34)

.


Такое превышение температуры допустимо для выбранного нами провода ПЭВ-1.

20) Определяем активное сопротивление каждой из обмотки (3.35)


; (3.35)

;

;

.


В горячем состоянии при температуре  активное сопротивление каждой из обмотки определяется согласно (3.36)


, (3.36)

где .

;

;

.

21) Определяем уточненное активное падение напряжения во всех обмотках (3.37)


; (3.37)

;

;

.


22) Т.к. мощность , то влияние реактивного сопротивления по сравнению с активным можно пренебречь.

23) Трансформатор работает на вентильную систему. При этом активная составляющая мощности, потребляемой от сети (3.38)


; (3.38)

.


Определим КПД трансформатора (3.39)


; (3.39)

.


24) При расчете трансформатора, исходя из активной составляющей тока (3.40)


; (3.40),

находим  (3.41), ; (3.41)

.


4. Описание конструкции и технологии


Основными элементами конструкции трансформаторов являются магнитопровод и обмотки. Магнитопровод выбрали стандартный ПЛ 12,5X25-32 из стали Э310 толщиной пластин 0,35мм, который оптимальный для решения поставленной задачи. Торцы магнитопровода покрывают эмалью МЛ-152 синий У1 ОСТ 4.070.015.

Для обмотки выбрали провод круглого сечения с эмалевым высокопрочным покрытием из лака ВЛ-931 (ГОСТ 7262-70) марки ПЭВ-1, допускающей работу при температуре +105°С, что допустимо, т.к рассчитанный трансформатор максимально может нагреться до температуре 95°С.

Обмотки трансформатора наматывается на гильзу с толщиной щек равной 0,5мм, выполненной из гетинакса II ГОСТ 2718-74.

Выводы трансформатора представляют собой провод марки МГШДО (ГОСТ 10349-69), имеющий токопроводящую жилу скрученную из медных луженых проволок, изолированный двойной обмоткой из полиамидного шелка. Провод паяется с обмоткой припоем типа ПОС-61 и выводится через специальные отверстия на катушке.

Пропитка осуществляется лаком МЛ-92 ГОСТ 15865-92., преследующая цель заполнить все поры вытеснить из катушек воздух и тем повысить влагостойкость, а также теплопроводность катушек. Пропитка также цементирует катушки, в ряде случаев повышает класс нагревостойкости изоляции.

В техническом задании указана программа выпуска трансформатора -5000 штук в год, что соответствует массовому производству. В соответствии с этим, некоторые операции по изготовлению трансформатора можно автоматизировать; изготовить нестандартных деталей, максимально подходящих для обеспечения дополнительных условий ТЗ.

Изготовление стойки произвести путем штамповки. Нарезка лент из фольги осуществить пресс-ножницами. Вместо сборной конструкции каркаса применяем гильзу.

ПАСПОРТ

1. Напряжение источника питания,  24

2. Частота питающей сети,  50

3. Напряжения вторичных обмоток,  5; 9

4. Потребляемый ток,  1.92

5. Токи вторичных обмоток, ; 1.6

6. Фактическая плотность тока в проводах обмоток,  4.46; 3.82; 3.72

7. Номинальная мощность,  29.4

8. Потребляемая мощность,  56.4

9. КПД,  80

10. Ток холостого хода,  0.54

11. Тепловое сопротивление катушки,  2.98

12. Тепловое сопротивление гильзы,  7.1

13. Максимальное превышение температуры катушки,  .55

14. Максимальная температура проводов обмотки,  95

Исполнение УХЛ, категория размещения 4.2

Программа выпуска 5000 шт. в год.


Заключение

В процессе выполнения данного курсового проекта была разработана конструкция трансформатора питания. Обеспечены минимальные габаритные размеры путем выбора стержневого магнитопровода с максимальной магнитной индукции, а также выбором максимально возможной плотности тока в обмотках. Определены конструкторские и технические параметры трансформатора. Произведен выбор материалов, необходимых для изготовления трансформатора и его составных частей. Выполнены необходимые расчеты по определению электрических и конструктивных параметров трансформатора. Получены определенные навыки расчета параметров и разработки технической конструкторской документации на изготовление элементов электронной аппаратуры.

Рассчитанный трансформатор поддается автоматизации, что позволяет изготавливать трансформатор серийно.


Список литературы


1.                 Векслер Г.С. Расчет электропитающих устройств. - К.: Техника, 1978г.

2.                 М.И. Белопольский, Л.Г. Пикалова. Расчет трансформаторов и дросселей малой мощности. - М.: Энергия, 1970г.

3.                 Малогабаритные трансформаторы и дроссели: Справочник / И.Н. Сидоров, В.В. Мукосеев, А.А. Христинин: Радио и связь, 1985г.

4.                 Практическое пособие по учебному конструированию РЭА/В.Т. Белинский, В.П. Гондюл, А.Б. Грозин и др. - К.: Вища школа, 1992г.

5.                 В.А. Волгов Детали и узлы радиоэлектронной аппаратуры. - М.: Энергия, 1977.


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.