Рефераты. Тиристорные преобразователи частоты: назначение, типы, структурная схема. Коротко о частотно-регулируемом приводе

За период после 25 лет эксплуатации имели место повреждения:

·                     внутренние повреждения трансформаторов из-за длительного их неотключения при сквозных КЗ на стороне 10 кВ;

·                     повреждения РПН и обмоток трансформаторов при переключениях РПН;

·                     повреждения трансформаторов из-за нарушения контактов отвода обмотки, обрыва части проводников гибкой связи от вводного изолятора к обмотке, отгорания отвода обмотки в баке трансформатора с замыканием на ярмовую балку;

·                     повреждения негерметичных вводов из-за увлажнения и загрязнения внутренней изоляции;

·                     износ изоляции обмоток.

Из зафиксированных случаев повреждений трансформаторов с внутренними короткими замыканиями 15% сопровождались взрывами и пожарами. Эти повреждения в основном были вызваны повреждениями РПН, обмоток и высоковольтных вводов.

Так, в частности, при перекрытии изоляции масляного канала герметичного ввода ГМТА-110 произошло повреждение автотрансформатора АТДЦТН-125000/220/110 1985г. изготовления. Трансформатор поврежден полностью и восстановлению не подлежит.

Из-за сильного износа изоляции обмоток произошло повреждение с пожаром трансформатора ОТД-60000/220/110 1958г. изготовления с полным разрушением трансформатора и вводов 220, 110 и 10 кВ.

В результате повреждения РПН автотрансформатора АОДЦТН-267000/500/220 1973 г. изготовления и последующего пожара произошли: разрыв бака, разрушение фарфоровых покрышек вводов 220 кВ, корпуса контактора устройства РПН, отгорание спуска гибкой связи 220 кВ от воздействия пламени пожара, повреждение оборудования шкафов обдува (ШАОТ) и кабельных связей системы охлаждения, а также трех охладителей.

Проведенный анализ показал, что внутренние КЗ в трансформаторах 110-500кВ связаны, в первую очередь, с повреждениями РПН, высоковольтных вводов и обмоток. При этом наиболее тяжелые последствия имеют место при развитии таких дефектов, как:

·                     снижение электрической прочности масляного канала высоковольтных герметичных вводов из-за отложения осадка на внутренней поверхности фарфора и на поверхности внутренней изоляции, а также из-за коллоидного старения масла;

·                     снижение электрической прочности бумажно-масляной изоляции высоковольтных негерметичных вводов из-за увлажнения и загрязнения;

·                     увлажнение, загрязнение и износ изоляции обмоток трансформаторов;

·                     выгорание витковой изоляции и витков обмоток из-за длительного неотключения сквозного тока КЗ на стороне низшего напряжения трансформатора;

·                     ошибки монтажа, ремонта и эксплуатации.

Необходимо отметить, что большая часть указанных дефектов могла бы быть своевременно выявлена применением существующих методов и средств технической диагностики.

С выходом шестого издания [5] для силовых трансформаторов, автотрансформаторов и масляных реакторов существенно расширен перечень контролируемых параметров. При этом принципиальное отличие действующего документа [5] от предыдущего [6] заключается в том, что наряду с традиционными испытаниями, лежащими в основе оценки состояния трансформаторов, где контролируемые параметры в своей основе имеют связь с электрической прочностью изоляции, введены новые, не имеющие непосредственной связи, но нацеленные на раннее обнаружение развития дефектов. К ним относятся: хроматографический анализ газов, растворенных в масле; контроль содержания фурановых соединений в масле; измерение степени полимеризации; тепловизионный контроль; измерение сопротивления короткого замыкания. Также появляются предложения по дальнейшему расширению данного перечня, в частности: контроль уровня частичных разрядов; ИК-спектрометрический анализ; контроль мутности и поверхностного натяжения масла; вибрационный контроль состояния прессовки обмотки и др.


Таблица 4

Вид диагностической ценности методов контроля

Метод контроля

Анализируемый процесс

Вид диагностической ценности

Хроматографический анализ газов, растворенных в масле

Перегрев токоведущих соединений и элементов конструкции внутренней изоляции, электрический разряд в масле

Сопутствующий показатель физико-химического разрушения изоляции. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

Измерение степени полимеризации бумажной изоляции

Износ бумажной изоляции

Функция физико-химического разрушения изоляции. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

Измерение содержания фурановых соединений в масле

Старение бумажной изоляции

Сопутствующий показатель физико-химического разрушения изоляции. Отсутствие монотонности и значимых различий изменения содержания от срока эксплуатации и степени износа изоляции. Случайная диагностическая ценность

Измерение мутности масла

Коллоидно-дисперсные процессы в высоковольтных герметичных вводах

Функция физико-химического состояния коллоидно-дисперсной системы. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

Измерение поверхностного натяжения

Старение масла

Функция полярности жидкости. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

ИК-спектрометрия

Старение масла

Сопутствующий показатель наличия продуктов старения масла. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

Тепловизионный контроль

Локальные зоны перегрева

Сопутствующий показатель теплового состояния трансформатора и токоведущих частей. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность

Измерение частичных разрядов

Ионизационные процессы в изоляции

Сопутствующий показатель физико-химического разрушения изоляции. Отсутствие монотонности изменения во времени при развитии процесса. Случайная диагностическая ценность

Измерение сопротивления короткого замыкания

Деформация обмоток

Сопутствующий показатель изменения геометрии обмоток Монотонность изменения во времени при развитии процесса Детерминированная диагностическая ценность

Метод низковольтных импульсов

Деформация обмоток

Сопутствующий показатель изменения геометрии обмоток Монотонность изменения во времени при развитии процесса Детерминированная диагностическая ценность

Определение усилий прессовки обмоток трансформатора по частоте собственных колебаний системы прессовки при внешнем импульсном механическом воздействии

Распрессовка обмоток

Сопутствующий показатель степени прессовки обмоток. Монотонность изменения во времени при развитии процесса. Детерминированная диагностическая ценность


Один из наиболее объективных показателей, позволяющих оценить информативность используемого признака, - диагностическая ценность. При наличии статистических данных йот показатель представляет собой численную оценку информации о состоянии оборудования, которой обладает интервал значений измеряемого параметра.

Следует отметить, что при анализе диагностической ценности того или иного признака принципиально важное значение имеют следующие аспекты:

·                     является ли контролируемый показатель функцией физико-химического состояния изоляции или он отслеживает сопутствующие изменения при развитии процессов, приводящих к повреждениям;

·                     наличие монотонности изменения значения измеряемого показателя во времени при развитии характеризуемого им процесса;

·                     наличие значимых различий между значениями измеряемого показателя и степенью развития процесса.

Выполнение или невыполнение этих условий определяет вид диагностической ценности (наличие детерминированной или случайной, диагностической ценности) у используемых признаков.

В табл. 4 приведена оценка вида диагностической ценности методов контроля процессов, приводящих к повреждениям трансформатора. Необходимо подчеркнуть, что признаки со случайной диагностической ценностью, определяемой отсутствием монотонности изменения значений при развитии контролируемого им процесса, не могут быть использованы для принятия решений о состоянии оборудования, а лишь в некоторых случаях могут свидетельствовать о необходимости более полного обследования.

Дополнительно необходимо отметить, что в настоящее время в эксплуатации еще находится довольно много трансформаторов, изготовленных в соответствии с [7], имеющих недостаточную электродинамическую стойкость к возросшим уровням токов короткого замыкания в энергосистемах. Согласно [1] расчетная мощность трехфазного короткого замыкания в сетях 6 - 750 кВ примерно в 2,5 раза больше принятой в [I]. Повреждаемость трансформаторов, разработанных до 1970 г., согласно [8] превышает 1%, в то время как у новых она около 0,2% (без учета повреждений из-за высоковольтных вводов). Для трансформаторов, изготовленных в соответствии с [I], имеет место повышенный риск их повреждений. Риск в этом случае представляет собой материальные и социальные потери от коротких замыканий.

Объективное наличие фактора риска в условиях эксплуатации требует применения целенаправленных мероприятий, позволяющих снизить риск как в части вероятности повреждения трансформатора, так и в части возможных убытков. К первой части следует отнести используемые в практике координации уровней токов короткого замыкания различные мероприятия по ограничению сквозных токов короткого замыкания автотрансформаторов энергосистем при достижении токами значений 80% и более нормированного уровня [9, 10]. Это изменение схемы сети (схемные решения), обеспечивающее снижение токов короткого замыкания; стационарное и автоматическое деление сети; введение реакторов в нейтраль трансформаторов и автотрансформаторов; ограничение опасных воздействий токов короткого замыкания на обмотки автотрансформаторов путем выбора очередности АПВ линий и даже блокировки АПВ; применение методов и средств диагностики.

Требуется повышенное внимание к мероприятиям, оказывающим прямое влияние на снижение возможных убытков в случае возникновения аварийной ситуации: действия персонала в соответствии с нормативными инструкциями, эффективность работы автоматической системы пожаротушения, четкая работа релейной защиты и наличие необходимого резерва электрооборудования.

Выводы

1.                 Внутренние короткие замыкания в трансформаторе обусловлены чаще всего повреждениями РПН, высоковольтных вводов и обмоток. Эти повреждения сами по себе являются наиболее частыми.

2.                 Целесообразно внесение дополнений и изменений в РД 34.45-51.300-97 "Объем и нормы испытаний электрооборудования" в части оценки состояния бумажной изоляции обмоток на основе анализа диагностической ценности нормируемых показателей для трансформаторов, отработавших определенный стандартами минимальный нормированный срок службы 25 лет.

3.                 Целесообразно разработать методические указания по повышению надежности герметичных вводов в эксплуатации для продления срока службы трансформаторов.

4.                 Для трансформаторов, у которых возможны превышения допустимых для них значений токов короткого замыкания, имеет место повышенный уровень риска их повреждений, который следует учитывать в эксплуатации. Важной составной частью мероприятий при оценке технического состояния таких трансформаторов является выявление наличия опасных деформаций обмоток, потери механической прочности витковой изоляции и распрессовки обмоток.

5.                 Необходимо повысить требования к электротехнической промышленности в части повышения надежности работы РПН, вводов и обмоток (конструкция и изоляция).



Схемы электрооборудования обслуживаемого участка (цеха, отдела)


Защита от вредных веществ в промышленности: Вентиляция. Назначение, виды


Вентиляцией называется совокупность мероприятий и устройств, используемых при организации воздухообмена для обеспечения заданного состояния воздушной среды в помещениях и на рабочих местах в соответствии со СНиП. (Строительными нормами).

Системы вентиляции обеспечивают поддержание допустимых метеорологических параметров в помещениях различного назначения.

Различают следующие виды вентиляционных систем:

1. Естественная вентиляция (Перемещение воздуха в системах естественной вентиляции происходит вследствие разности температур, давлений наружного воздуха и воздуха в помещении).

2. Механическая вентиляция (В механических системах вентиляции используются оборудование и приборы, позволяющие перемещать воздух на значительные расстояния).

3. Приточная вентиляция (Приточные системы служат для подачи в вентилируемые помещения чистого воздуха взамен удалённого).

4. Вытяжная вентиляция (Вытяжная вентиляция удаляет из помещения загрязненный или нагретый отработанный воздух). И т. д.

Вентиляционные системы, как правило, состоят из определенного набора компонентов:

1. Воздухозаборная решётка (через неё поступает воздух в систему)

2. Воздушный клапан (предотвращает попадания в помещение наружного воздуха при выключенной вентиляционной системе).

3. Фильтр (фильтрует поступающий воздух от механических загрязнений).

4. Калорифер или воздухонагреватель (подогревает воздух, поступающий в систему вентиляции в зимний период).

5. Шумоглушитель (предотвращает распространение шума по воздуховодам).

6. Вентилятор (подаёт или выбрасывает воздух из системы).

7. Воздуховоды (распределяют воздушные потоки по помещению).

8. Воздухораспределители (решетки или диффузоры: через них осуществляется подача (забор) воздуха из помещения).

9. Автоматика (управление элементами вентиляционной системы).

На сегодняшний день наиболее распространённым вентиляционным оборудованием является вентиляционное оборудование фирм Ostberg (Швеция), Systemair (Швеция).


Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.