Рефераты. Телефонные кабеля p> Возможность применения невлагоемкой полиэтиленовой изоляции сразу облегчила решение задачи. В 1948г. появились кабели в оболочке под названием «Алюминий - ПолиЭТилен». Конструкция «алпэт» объединяла два самостоятельных разнородных элемента кабеля: алюминиевый экран и просто полиэтиленовую экструдированную, то есть выпрессованную оболочку.
Назначение экрана – защищать цепи связи от мешающего и даже порой опасного влияния внешних магнитных полей, возбуждаемых линиями электропередачи, контактной сетью электрифицированных на переменном токе железных дорог, мощными радиостанциями.

Сочетание полиэтиленовой оболочки с полиэтиленовой изоляцией (и обязательно с алюминиевым экраном) явилось основой классической современной конструкции городских телефонных кабелей. Поливинилхлоридную оболочку, а иногда и изоляцию применяют в кабелях, прокладываемых в пожароопасных местах. В отличие от полиэтилена, поливинилхлорид не распространяет горения.

Новым явилась не только пластмассовая оболочка, но и конструкция алюминиевого экрана, который накладывался не традиционным методом спиральной обмотки, а продольно. Алюминиевая лента толщиной 0,2мм – гладкая в самых тонких кабелях и с мелкой поперечной гофрировкой во всех кабелях с диаметром сердечника свыше 15 мм – располагается по отношению к оси кабеля продольно и сворачивается вокруг движущегося сердечника так, что ее края взаимно перекрываются на 5-8 мм. Несмотря на простоту, как конструкции, так и технологии наложения, пластмассовые оболочки все же значительно уступают металлическим в главном – во влагозащитном действии. Через них проникают в кабель пары воды.

В 1961г. английским инженером Д.В. Гловером была запатентована алюмополиэтиленовая оболочка. Она представляет собой соединенные в одно целое полиэтиленовую оболочку и алюминиевый экран. Но для экрана берется в этом случае не просто алюминиевая лента, а покрытая с одной стороны или с обеих сторон тонким (0,02-0,03 мм) слоем полиэтилена. Экран с односторонним покрытием накладывается на сердечник так, чтобы полиэтиленовый слой был сверху. В головке экструдера, где поверх экрана выпрессовывается полиэтиленовая оболочка, при температуре 200-230(С оболочка и покрытие экрана свариваются между собой, в результате оболочка как бы металлизируется изнутри. Ее внутренний тонкий металлический слой служит барьером на пути паров влаги, пытающихся проникнуть через оболочку внутрь кабеля.

Конструкция оказалась вполне эффективной и весьма технологичной.
Продольное наложение на сердечник кабеля экранной ленты и экструдирование полиэтиленовой оболочки совмещены в одном технологическом процессе. Для паров влаги, прошедших сквозь толщу полиэтилена и «упершихся» в алюминиевый барьер, остается единственный проход между перекрывающимися кромками экранной ленты. При одностороннем покрытии алюминия полимером скорость диффузии в среднем в 100 раз меньше, чем через обычную полиэтиленовую оболочку. Значительно более эффективно двухстороннее покрытие, так как полиэтиленовые пленки обеих кромок шва свариваются между собой, и парам влаги приходится преодолевать узкий полиэтиленовый слой. Скорость диффузии через такую оболочку замедляется в 15000 раз. Вот почему «барьер Гловера» является предпочтительной модификацией полиэтиленовой оболочки.

Развитие конструкций сердечника всегда шло по пути увеличения максимального числа пар и уменьшения диаметра токопроводящих жил. (Табл. 7, стр. 205)

Процесс скрутки сердечников современных кабелей – многоступенчатый.
Сначала скручиваются так называемые элементарные пучки из 10 пар или 5 четверок. Число цепей в них соответствует емкости распределительных коробок. Распределительные кабели с числом пар 10-100 скручиваются из элементарных пучков. В кабелях для магистральных и соединительных линий с числом пар от 100 и выше элементарные пучки сначала скручиваются в главные, состоящие из 50 или 100 пар. Затем главные пучки скручиваются по определенной системе в сердечник. Современные крутильные машины и технологические приемы позволяют осуществлять две или даже три последовательные операции скрутки одновременно, то есть совмещать их.

Междугородные кабели

Перейти от городских телефонных кабелей к междугородным позволили теоретические исследования американского электротехника Михаила Пупина
(1858-1935), известные под названием «пупинизация». Использовав открытие
Хевисайда о возможности уменьшения потерь в линии путем искусственного увеличения ее индуктивности, то самое условие RC=LG, Пупин предложил включать в цепи кабеля специальные катушки индуктивности и рассчитал оптимальное расстояние между ними. Индуктивность линии благодаря этому могла быть повышена в десятки и сотни раз.

После изобретения Пупина датский инженер Карл Краруп разработал другой способ искусственного увеличения индуктивности кабелей. Вместо того чтобы через каждые 1,5-2 км включать в линию катушки индуктивности, он предложил обматывать токопроводящие медные жилы тонкой лентой или проволокой из стали, магнитные свойства которой в 100-200 раз сильнее, чем меди. А индуктивность зависит от магнитной проницаемости. Толщина стальной ленты или диаметр проволоки были 0,2-0,3 мм.

Эффективность крарупизации в несколько раз меньше, чем пупинизации, так как стальная обмотка увеличивает индуктивность цепей лишь в 8-10 раз.
Но крарупизированные кабели оказались более удобными для подводной прокладки.

Радикальное решение проблемы дальности связи принесли усилители.

В 1904г. английский физик и радиотехник Джон Флеминг изобрел первую электронную двухэлектродную лампу – диод. В 1907г. американский радиотехник
Ли де Форест изобрел трехэлектродную лампу – триод. В ней между катодом и анодом, ближе к катоду, была помещена также металлическая проволочная сетка. При отрицательном потенциале на сетке она частично задерживала поток электронов, стремящихся к аноду, при положительном потенциале, наоборот, усиливала электронный поток и, следовательно, текущий через лампу так называемый анодный ток. Эта способность управляющей сетки триода и была использована для создания промежуточных телефонных усилителей в линии связи.

На сетку подаются прошедшие уже часть длины линии и, следовательно, ослабленные электрические сигналы телефонной передачи. Колебания напряжения в цепи сетки, соответствующие частотам передаваемых сигналов, вызовут подобные же, но значительно усиленные по величине (по амплитуде) колебания анодного тока. Благодаря этому дальше в линии пойдут сигналы восстановленной мощности. Таким образом, если в линии через определенное расстояние устанавливать усилители, то можно обеспечить дальность связи.

Многоканальные системы передачи.

Кабели являются материалоемкой и дорогой частью сооружений связи.
Поэтому на протяжении всей истории развития линий связи инженеры стремились к наиболее эффективному использованию каждой физической цепи.

В 1882г. Франк Джекоб показал, что на каждых двух парах жил в кабеле можно получить кроме физических цепей еще одну – третью цепь путем использования специальных трансформаторов. Эта цепь была названа фантомной, так как самостоятельно она физически не существует: ее прямым проводом служат обе жилы первой пары, а обратным проводом – обе жилы второй пары.
Таким образом, можно было повысить эффективность использования кабельных цепей на 50%.

Радикальное решение проблемы наиболее эффективного использования кабелей связи принесло создание многоканальных систем передачи, позволивших осуществлять по физическим цепям высокочастотное, или широкополосное, телефонирование. (Схема стр. 220)

Начиная с середины 1930-х годов возникло деление кабелей на низкочастотные и высокочастотные. Наряду с традиционными симметричными появился совершенно новый тип кабелей связи – коаксильный. (Рис. стр. 225)

Если обе жилы выполнены из проволоки одинакового диаметра, имеют изоляцию одинаковых конструкций и толщины и расположены так, что между ними можно провести плоскость симметрии, то цепь является симметричной.
Соответственно кабели, скрученные из симметричных пар или четверок, называют симметричными.

Если же оба проводника цепи выполнены в форме соосных цилиндров, в поперечном сечении имеют форму концентрических окружностей, то цепь считается несимметричной и называется коаксильной. Кабели, скрученные из коаксильныхцепей, или пар, называются коаксильными. Если же кабель содержит и коаксильные, и симметричные цепи, то он комбинированный.

Симметричные.

Современные симметричные кабели дальней связи, как правило, высокочастотные. Низкочастотным отведена второстепенная роль – для отдельных линий небольшой протяженности, отводов от магистральных линий и т.д.

Диаметр токопроводящих медных жил в высокочастотных симметричных кабелях 1,2 или 1,3 мм; в низкочастотных применяются и жилы меньших диаметров – 0,8и 0,9. Для высокочастотных кабелей заманчивы трубчатые или биметаллические алюмомедные жилы.

Изоляция жил высокочастотных кабелей принадлежит к высшему классу изоляции симметричных кабелей. Это – кордельно – полистирольная, кордельно
– бумажная, кордельно – полиэтиленовая. Основу ее составляет нить – кордель из соответствующего материала. Поверх корделя формируется изоляционная трубка – либо методом спиральной обмотки лентой из полистирольной пленки толщиной 0,05мм или из кабельной бумаги толщиной 0,12мм, либо методом экструдирования полиэтилена. Так как диаметр корделя равен примерно 2/3 диаметра токопроводящей жилы, то кордельный каркас обеспечивает наибольший, причем стабильный воздушный промежуток между токопроводящей жилой и изоляционной трубкой.

Кабели с кордельной изоляцией характеризуются наименьшей эквивалентной диэлектрической проницаемостью и, следовательно, электрической емкостью. В зависимости от назначения и условий эксплуатации кабелей кроме кордельной применяются также сплошная и пористая полиэтиленовая изоляция.

Коаксильные.

Теория коаксильного кабеля связи была разработана и опубликована в
1934г. С.А. Щелкуновым. Уникальность коаксильного кабеля состоит в том, что в противоположность симметричным кабелям с расширением спектра передаваемых частот помехозащищенность цепей не ухудшается, а улучшается. Благодаря повышению помехозащищенности с ростом частоты по коаксильным парам возможно передавать в десятки и сотни раз большее число разговоров, чем по симметричным.

Разнообразны варианты изоляции коаксильных пар: шайбовая, баллонная, бамбуковая и др. Характерной особенностью современных коаксильных кабелей является то, что они большей частью комбинированные. (Стр. 242, 244)

Экономичность коаксильных кабелей по сравнению с симметричными - табл.13, стр. 246.

Подводные кабели

1 период – 1850- 1900гг.- телеграфные одножильные морские и океанские кабели с гуттаперчевой изоляцией.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.