Рефераты. Структурный синтез устройств с мультидифференциальными операционными усилителями

.                                                    (10)

Рис. 4. Упрощенная принципиальная схема мультидифференциального каскада (а) и возможные варианты его функциональных схем (б), (в)


Следовательно, по аналогии с выражением (7) для стандартного инвертирующего включения ОУ (при остальных заземленных входах) можно записать


,


где КПК – коэффициент усиления промежуточного каскада.

По аналогии с (8) для коэффициента усиления по любому из неинвертирующих входов, на который не подана обратная связь, можно записать

.


По неинвертирующему входу для рассматриваемого случая


.


Следует отметить, что напряжение смещения, приведенное ко входу у усилителя, представленного на рис. 4а, практически совпадает с аналогичным параметром обычного ОУ с одиночным дифференциальным каскадом на входе, но при условии, что плотность токов эмиттеров транзисторов VT1–VT4 одинакова. Это достигается тем, что площадь эмиттера транзистора VT4 должна быть в три раза больше площади эмиттера транзисторов VT1–VT3. Как и в предыдущем случае, балансировку нуля по выходу ОУ можно осуществить изменением коэффициента передачи повторителя тока на транзисторах VT5–VT6.

При функциональном построении мультидифференциального ОУ по схеме рис. 4в коэффициент усиления при стандартном инвертирующем включении на низких частотах будет определяться по аналогии с выражением (2), а для неинвертирующего включения , то есть в три раза меньше, чем для случая функциональной схемы рис. 4б.

Естественно, частота единичного усиления в этом случае также уменьшается в три раза по сравнению с частотой единичного усиления разомкнутого усилителя.

При введении нескольких контуров ООС в МОУ происходит взаимное влияние цепей обратной связи на результирующий коэффициент передачи. При включении ОУ инвертирующего усилителя по обеим входам выражения для коэффициентов передачи по каждому входу в области низких частот будут выглядеть следующим образом:


                                                  (11)

                                                   (12)


где ; ; Ki – коэффициент передачи соответствующего плеча дифференциального каскада (рис. 1б).

При условии, что все Ki равны по абсолютной величине, что легко выполнимо, выражения (11) и (12) можно представить как


;                                                   (13)

.                                                 (14)


Для неинвертирующего включения мультидифференциального ОУ по каждому из неинвертирующих входов коэффициент передачи можно представить как

                                          (15)

                          (16)


Из выражений (11)–(16) следует, что при использовании многоконтурных ООС глубина обратной связи возрастает, в частности, в классическом ОУ для неинвертирующего включения при  = 0,5 коэффициент усиления будет близок к двум, а в рассматриваемом случае при 1 = 2 = = 0,5 коэффициент усиления будет близок к единице.

Очевидно, что при одновременном использовании инвертирующих и неинвертирующих входов выходное напряжение ОУ можно определить согласно принципу суперпозиции, если сопротивление источников сигналов будет много меньше входных сопротивлений соответствующих входов.

Поскольку коэффициенты Кi – комплексные и, в общем случае, постоянные времени высоких частот каждого дифференциального каскада различны, передаточная функция для случая неинвертирующего включения ОУ будет иметь вид:


 (17)


поэтому обеспечение устойчивости такого усилителя может оказаться сложной, но решаемой задачей.

Ток потребления стандартного ОУ складывается из следующих составляющих (если входной одиночный дифференциальный каскад выполнен аналогично рис. 2):

IОУ = IВК + I1 + 2I0 » 2I1 + 2I0,                                                 (18)


где IВК, I1, 2I0 – токи, потребляемые выходным, промежуточным и входным дифференциальным каскадами.

Для схем мультидифференциальных ОУ, представленных на рис. 2 и 4 соответственно


IОУ = IВК + 2I1 + 4I0,                                                                        (19)

IОУ = IВК + 2I1 + 6I0,                                                                        (20)


откуда следует, что ток МОУ возрастает весьма незначительно по сравнению с классическим.

 

3. Обобщенная структура и основные свойства электронных схем с мультидифференциальными ОУ


Увеличение числа входов дифференциальных каскадов, как это было показано ранее, приводит к снижению коэффициента ослабления синфазного сигнала, причем он может зависеть от требуемого количества входов. Кроме этого, необходим поиск особенностей функционально-топологиче-ских принципов введения в схему дополнительных (компенсирующих) обратных связей и, следовательно, анализ основных свойств электронных схем с МОУ.

Для решения поставленной задачи воспользуемся обобщенной структурой электронных схем с МОУ (рис. 5).

Рис. 5. Обобщенная структура с мультидифференциальными ОУ


Из векторного сигнального графа (рис. 6) этой структуры следует система векторно-матричных уравнений:


                 (21)


Смысл векторов  следует из рис. 6. Векторы ,  размерностью N´1 описывают расщепитель входного сигнала x0 и связывают его с инвертирующим (-) и неинвертирующим (+) входами  мультидифференциальных ОУ . Матрицы ,  образованы локальными пе-редаточными функциями пассивной подсхемы, обеспечивающей передачу и преобразование сигнала со входа i-го активного элемента на j-й инвертирующий или неинвертирующий входы l-го МОУ. Активные элементы описываются диагональными матрицами размера (N´N):

,                                                   (22)


компоненты которых являются передаточными функциями i-го МОУ по j-му инвертирующему (-) и неинвертирующему (+) входам.


Рис. 6. Векторный сигнальный граф обобщенной структуры


Связь выходов активных элементов с нагрузкой осуществляется через сумматор, локальные передачи которого образуют вектор T = [ti] размера (N´1). Для учета влияния ослабления синфазного сигнала по различным входам введем в общем случае функции:


,                                                  (23)


характеризующих неидентичность каналов усиления входного сигнала. Тогда


                                             (24)

                                                (25)

Решение системы (21) приводит к следующему вектору выходных сигналов МОУ:


,                                                   (26)

где                                                                        (27)

;                                                                              (28)

 ;                         (29)

.                                                      (30)


Из (26) может быть получена передаточная функция любого электронного устройства с МОУ:


.                                        (31)


Реально коэффициенты ослабления синфазного сигнала достаточно велики, поэтому при анализе их влияния на функцию (31) можно исключить мультипликативные составляющие, представляющие собой величины второго порядка малости.

Рассмотрим влияние j-го коэффициента для инвертирующего входа i-го активного элемента. Индекс j соответствует номеру матрицы:


.                 (32)


Тогда по методу Дуайра и У0 [2] (метода пополнения при обращении матрицы) получим:

, (33)


где .

Следовательно,


.                    (34)


В выражении (34)


                                                                   (35)


является локальной передаточной функцией системы при подаче сигнала на j-й вход i-го активного элемента, представляет собой передаточную функцию при условии, что вектор Т образован компонентами i-й строки матрицы , а


                                                      (36)


является передаточной функцией системы при подаче сигнала на j-й вход i-го МОУ при условии, что вектор Т образован указанным выше способом.

Аналогичный результат получается и для . Однако, как это следует из (27) и (28), в соответствующих выражениях необходимо изменить знак слагаемых. С учетом структуры вектора (28) полное приращение передаточной функции системы будет иметь следующий вид


     (37)


Здесь и далее


;                                                                  (38)

;                                                                  (39)

;                                                                             (40)

;                                                         (41)

;                                                                         (42)

,                                                                (43)


где  – вектор-столбец размером (N ´ 1), имеющий отличную от нуля и равную единице компоненту, соответствующую j-му неинвертирующему (инвертирующему) входу i-го МОУ (см. структуру вектора (30);  – передачи пассивной подсхемы от источника сигнала к j-му неинвертирующему (инвертирующему) входу i-го усилителя; – коэффициент ослабления синфазного сигнала i-го МОУ по j-му неинверти-рующему входу; – коэффициент относительной неидеальности i-го МОУ j-му инвертирующему входу (см. (23)).

В соотношениях (37)–(43) индекс j характеризует номер матрицы, входящей в ряд (29).

Структура приращения передаточной функции (37) указывает на возможность взаимной компенсации влияния неидентичности каналов мультидифференциальных ОУ. Кроме этого, последние две составляющие ряда (37) могут быть направлены на компенсацию влияния выходного сопротивления применяемых активных элементов на амплитудно-частот-ные характеристики фильтров.

Примененный метод пополнения при обращении матрицы можно использовать и при анализе влияния площади усиления МОУ. Из соотношения (31) следует приращение передаточной функции, вызванное влиянием площади усиления (Пi) МОУ:


                                            (44)


Здесь


                                                                     (45)


является передаточной функцией идеализированной обобщенной схемы модели при подключении источника сигнала к одному из неинвертирующих входов i-го МОУ;


                                         (46)


есть передаточная функция на выходе i-го МОУ, а

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.