Рефераты. Структурированные кабельные системы

Вся продукция компании Legrand – электрооборудование (выключатели, розетки и др.), кабельные короба, каналы и лотки, шкафы и щиты, защита и коммутация, автономные блоки аварийного освещения - разрабатывается на основе новейших научных достижений и отвечает высоким стандартам европейского качества. Legrand любима как профессионалами-электротехниками, так и конечными потребителями, поскольку отличается простотой в установке, удобством в эксплуатации, красивым и разнообразным дизайном [4].

Именно поэтому кабель-канал и аксессуары для него были использованы от фирмы Lergand, а это кабель-канал 80*35 (без крышки) длина 2 м, крышка для него 65 мм, кабель-канал 32*20 длина 2 м, DLP Суппорт/рамка 2 модульная для крышки 65 мм, и др. Почему именно кабель-каналы таких размеров объясняется в подразделе 2.2.

Шкаф настенный ConAct, 12 U, B600, T400, Glas Door от фирмы Knurr, я выбрал его, потому что он используется специально для размещения сетевого, телекоммуникационного и активного оборудования, имеет стеклянную дверь и технологические отверстия в крышке для вывода кабелей.

А для размещения сетевого оборудования распределителя здания, был использованан напольный шкаф 19" Smaract, w.glass door, 12 U, D600 от той же фирмы Knurr. Также для заземления оборудования в этих двух шкафах был использован комплект от этого же производителя ConAct Earth-Contact-Kit. Ведь все оборудование, используемое в компьютерных сетях должно заземляться, поэтому приобретено 2 таких комплекта для каждого распределителя.

Также в каждом распределителе я установлены источники бесперебойного питания (ИБП), так как компьютерную сеть нужно защищать от пропадания напряжения, проседания и всплесков, от высокочастотных шумов, высоковольтных выбросов, выбега частоты и гармонического искажения питающего напряжения. ИБП Smart UPS 1500 VA RM 2 U от фирмы APC, был выбран по причине того, что имеется возможность установки в 19'' стойки. А также ИПБ обладает автоматической регулировкой напряжения, хорошей защитой от высокого напряжения, низким потреблением энергии, тестированием аккумуляторов, имеет увеличенное время автономной работы [12].

А также для монтажа сетевого оборудования в телекоммуникационные шкафы необходимо было купить набор винтов с гайками, ведь не все производители поставляют их в комплекте с оборудованием.

Для организации кабеля внутри шкафов потребуются стяжки, было решено использовать кабельную стяжку Colring, размером 2.4x140 мм.

А для того чтобы не запутаться с кабелями используют средства маркировки, я использовал черный фломастер, предназначенный специально для маркировки.

Все пассивное сетевое оборудование и аксессуары соответствуют требованиям сетевой технологии, а так же соответствуют стандарту структурированных кабельных систем.


1.5 Обоснование выбора активного сетевого оборудования


Активное оборудование, так же как и пассивное, я выбрал в той же фирме-поставщике – «U-PRINT».

Активное сетевое оборудование я подбирал по следующим критериям:

1) Поддержка сетевой технологии Gigabit Ethernet 1000BaseT со стандартом IEEE 802.3ab.

2) Коммутатор должен быть управляемым, что позволяет системному администратору управлять сетью и следить за правильным функционированием компьютерной сети.

3) Коммутатор должен монтироваться в 19" телекоммуникационный распределительный шкаф.

4) Количество портов коммутатора должно быть с запасом.

5) Гарантия на активное оборудование в течение 5 лет.

6) Иметь выделенные порты для стекирования. То есть при расширении сети можно постепенно добавлять коммутаторы в стек, объединять несколько стеков или организовывать канал между стеком и магистралью сети или сервером.

Именно по этим критерия было решено закупить коммутаторы серии D-Link DGS-3100, имеющий 44 port UTP 10/100/1000BASE-T + 4 combo 1000BASE-T/SFP, предназначенный специально для установки в 19'' стойки. Коммутаторы серии DGS-3100 снабжены двумя выделенными портами HDMI для стекирования, каждый из которых обеспечивает полосу пропускания 5 Гбит/с (для всей системы полоса пропускания для стекирования - до 20 Гбит/с в режиме полного дуплекса). Также DGS-3100 поддерживает стандартные протоколы управления, а именно SNMP, RMON, Telnet, Web GUI, SSH/SSL. Функция автоконфигурации с помощью протокола DHCP позволяет администратору настроить автоматическое получение коммутаторами настроек IP с DHCP-сервера [3].



2 Расчетная часть

2.1 Расчет длины кабельных сегментов


Расчет длины кабельных сегментов сводится к суммированию длин отдельных сегментов. Длины всех отдельных сегментов отражены в таблице Д.1.

При составлении таблицы Д.1 была учтена необходимость добавления запаса, длиной 5м, к требуемой длине кабеля, прокладываемого стационарно. Такая необходимость обусловлена тем, что длина этих сегментов была вычислена не эмпирическим, а теоретическим способом, на основе электронных версий планов соответствующих этажей, которые могут не точно соответствовать действительным размерам помещений.

Также были использованы патч-корды длиной 0.5 метра, соединяющие активное сетевое оборудование (коммутаторы) с пассивным оборудованием (патч-панели), в распределителях этажа и здания. А для соединения персональных компьютеров или IP-телефонов с телекоммуникационной розеткой было решено использовать патч-корды длиной 2 метра. Все это тоже отражено в таблице Д.1.

При суммировании всех кабельных сегментов (без патч-кордов) у меня получилась длина 1657 метров. А так как кабель витая пара продается бухтами по 305 метров, можно вычислить нужное количество этих бухт по ниже приведенной формуле (1).


N = L / l ,                                           (1)


где N – количество бухт, шт.;

L – длина всего кабеля, необходимого для прокладки сети, м;

l – длина кабеля в одной бухте, м.


Подставив соответствующие значения, и незначительно округлив, получим:


N = 1657 / 305 = 6 шт.


То есть для прокладки сети во втором корпусе ПАТ потребуется 6 бухт кабеля витая пара.


2.2 Расчет сечения кабельных каналов


Расчет выполняется исходя из информации о количестве и типе кабелей проходящих на том или ином участке кабельной системы (см. приложения Б, В). Необходимо определиться, где будут прокладываться кабельные каналы того или иного типа, а именно магистральный кабельный канал и кабельный канал отвода. Для каждого типа кабельного канала выполняется расчет только на участках кабельной системы с максимальным количеством кабелей, а точнее там, где больше занимаемая площадь поперечного сечения кабельного канала этими кабелями.

Расчет сечения кабельных каналов выполняется по формуле (2):

 


                                                                                               (2)


где S – необходимая площадь сечения кабельного канала, м 2;

n – количество типов кабелей, проходящих на данном участке кабельного канала, шт.;

Ni – количество кабелей i-го типа, проходящих на данном участке кабельного канала, шт.;

si – площадь сечения кабеля i-го типа, м 2;

k – коэффициент заполнения кабельного канала.

Так как предполагается прокладывать только один тип кабеля, только неэкранированный четырех парный кабель витая пара категории 5е, то задача существенно упрощается и сводится к подсчету количества кабелей в местах их максимального скопления для обоих типов кабельного канала соответственно.

При расчете рекомендуется считать коэффициент заполнения k равным 1,4. Также для компенсации невозможности идеальной укладки кабеля в кабельный канал необходимо считать, что кабели имеют квадратное сечение.

Согласно выше сказанному площадь сечения кабеля, s, определяется по формуле (3)


s = d 2 ,       (3)


где d – диаметр кабеля, мм.

Так как диаметр используемого кабеля витая пара приближенно равен 5 мм, то

s = 5 2 = 25 мм 2

В соответствии с планами прокладки кабельной системы первого и второго этажей второго корпуса ПАТ, представленными в приложениях Б и В соответственно, максимально число кабелей для магистрального кабельного канала составляет 55 штук, для кабельного канала отвода – 14 штук

После того, как стали известны все необходимые исходные данные можно выполнить расчет сечения магистрального кабельного канала и кабельного канала отводов, подставив значения в формулу (2).

Площадь сечения магистрального кабельного канала, в соответствии с формулой (2) равна:


S = 55 * 25 * 1.4 = 1925 мм 2


Площадь сечения кабельного канала отводов, в соответствии с формулой (2) равна:


S = 14 * 25 * 1.4 = 490 мм 2


Из имеющихся в наличии кабельных каналов, для магистрального было решено использовать кабельный канал 80*35, площадь сечения которого составляет 2800 мм 2, а для кабельного канала отводов – кабельный канал 32*20, с площадью сечения 640 мм 2.


2.3 Расчет высоты коммуникационных шкафов распределителей


Расчет высоты коммуникационных шкафов сводится к вычислению занимаемого оборудованием места как суммы высот каждого активного и пассивного сетевого оборудования и аксессуаров. Высота коммуникационных шкафов измеряется в U (юнитах), необходимо заметить что 1 U = 1,75 дюйма = 44,5 мм. Результаты расчетов представлены в таблицах 6 и 7 для распределителя этажа и здания соответственно.


Таблица 6 – Расчет высоты распределителя этажа FD-110-1

Артикул

Наименование

Количество, шт.

Высота оборудова-ния, U

Итого,U

1

SUA1500RMI2U

Smart UPS 1500 VA RM 2 U

1

2

2

2

DGS-3100-48

44 port UTP 10/100/1000BASE-T + 4 combo 1000BASE-T/SFP, L2 Management Switch,

2-port 10G (for stacking), 19"

2

1

2

3

406331-1

110 Block Patch Panel, 48 port, T568A, 19''

2

1

2

4

5.040.111.1

CABLE ROUTING PANEL, 1 U, 19"

4

1

4

ВСЕГО

10 U

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.