Рефераты. Современные микропроцессоры p> Следующим процессором, продолжающим лиию Pentium, был выпущен P6 или
PentiumPro. Он работает с тактовыми частотами 150: 166: 180 и 200 МГц.
PentiumPro обеспечивает полную совместимость с процессорами предыдущих поколений. Он предназначен главным образом для поддержки высокопроизводительных 32-битовых вычислений в области САПР, трехмерной графики и мультимедиа: а также широкого круга коммерческих приложений баз данных. По результатам испытаний на тестах SPEC (8.58 SPECint95 и 6.48
SPECfp95) процессор PentiumPro по производительности целочисленных операций в текущий момент времени вышел на третье место в мировой классификации, уступая только 180 МГц HP PA-8000 и 400 МГц DEC Alpha (рис.2.). Для достижения такой производительности необходимо использование технических решений, широко применяющихся при построении RISC-процессоров:

Рис.2. выполнение команд не в предписанной программой последовательности, что устраняет во многих случаях приостановку конвейеров из-за ожидания операндов операций; использование методики переименования регистров, позволяющей увеличивать эффективный размер регистрового файла (малое количество регистров - одно из самых узких мест архитектуры x86); расширение суперскалярных возможностей по отношению к процессору Pentium, в котором обеспечивается одновременная выдача только двух команд с достаточно жесткими ограничениями на их комбинации.

Кроме того, в борьбу за новое поколение процессоров x86 включились компании, ранее занимавшиеся изготовлением Intel-совместимых процессоров.
Это компании Advanced Micro Devices (AMD), Cyrix Corp и NexGen. С точки зрения микроархитектуры наиболее близок к Pentium процессор М1 компании
Cyrix, который должен появиться на рынке в ближайшее время. Также как и
Pentium он имеет два конвейера и может выполнять до двух команд в одном такте. Однако в процессоре М1 число случаев, когда операции могут выполняться попарно, значительно увеличено. Кроме того в нем применяется методика обходов и ускорения пересылки данных, позволяющая устранить приостановку конвейеров во многих ситуациях, с которыми не справляется
Pentium. Процессор содержит 32 физических регистра (вместо 8 логических, предусмотренных архитектурой x86) и применяет методику переименования регистров для устранения зависимостей по данным. Как и Pentium, процессор
M1 для прогнозирования направления перехода использует буфер целевых адресов перехода емкостью 256 элементов, но кроме того поддерживает специальный стек возвратов, отслеживающий вызовы процедур и последующие возвраты.

Процессоры К5 компании AMD и Nx586 компании NexGen используют в корне другой подход. Основа их процессоров - очень быстрое RISC-ядро, выполняющее высокорегулярные операции в суперскалярном режиме. Внутренние форматы команд (ROP у компании AMD и RISC86 у компании NexGen) соответствуют традиционным системам команд RISC-процессоров. Все команды имеют одинаковую длину и кодируются в регулярном формате. Обращения к памяти выполняются специальными командами загрузки и записи. Как известно, архитектура x86 имеет очень сложную для декодирования систему команд. В процессорах K5 и
Nx586 осуществляется аппаратная трансляция команд x86 в команды внутреннего формата, что дает лучшие условия для распараллеливания вычислений. В процессоре К5 имеются 40, а в процессоре Nx586 22 физических регистра, которые реализуют методику переименования. В процессоре К5 информация, необходимая для прогнозирования направления перехода, записывается прямо в кэш команд и хранится вместе с каждой строкой кэш-памяти. В процессоре
Nx586 для этих целей используется кэш-память адресов переходов на 96 элементов.

Таким образом, компания Intel не обладает монополией на методы конструирования высокопроизводительных процессоров x86. Следует отметить, что сама компания Intel заключила стратегическое соглашение с компанией
Hewlett-Packard на разработку следующего поколения микропроцессоров, в которых архитектура x86 будет сочетаться с архитектурой очень длинного командного слова (VLIW –архитектурой.

А теперь мы плавненько перейдем на Pentium II.

Для компаний Intel и Hewlett-Packard не существовало "проблемы 2000 года" - для них это был год новых возможностей. В конце 1999 года Intel представила Merced - первый процессор, построенный с использованием архитектуры нового поколения, совместно разработанной двумя компаниями.
Хотя эта 64-разрядная архитектура основана на многолетних исследованиях
Intel, HP, других компаний и университетов, она радикально отличается от всего, что было представлено на рынке до нее.

Эта архитектура, известная под названием Intel Architecture-64 (IA-
64), полностью "порвала с прошлым". IA-64 не является как 64-разрядным расширением 32-разрядной архитектуры х86 компании Intel, так и переработкой
64-разрядной архитектуры PA-RISC компании HP. IA-64 представляет собой нечто абсолютно новое - передовую архитектуру, использующую длинные слова команд (long instruction words -- LIW), предикаты команд (instruction predication), устранение ветвлений (branch elimination), предварительную загрузку данных (speculative loading) и другие ухищрения для того, чтобы
"извлечь больше параллелизма" из кода программ.

По поводу совместимости, стоит заметить, что но в Merced на самом деле существует два режима декодирования команд VLIW и старый CISC. Т.е. программы переключаются в необходимый режим исполнения. В архитектуре х86 были добавлен ряд команд для перехода в новый режим, а также для передачи данных. В IA-64 такие команды есть изначально. Перед тем, как углубиться в технические детали, попробуем понять, почему Intel и HP рискнули пойти на столь кардинальные перемены. Причина сводится к следующему: они считают, что как CISC, так и RISC-архитектуры исчерпали себя.

Небольшой экскурс в прошлое. Архитектура х86 компании Intel - CISC архитектура, появившаяся в 1978 году. В те времена процессоры представляли собой скалярные устройства (то есть могли в каждый момент времени выполнять только одну команду), при этом конвейеров практически не было. Процессоры содержали десятки тысяч транзисторов.

PA-RISC компании HP была разработана в 1986 году, когда технология суперскалярных (с возможностью выполнения нескольких команд одновременно) конвейеров только начала развиваться. Процессоры содержали сотни тысяч транзисторов. В конце 90-х наиболее совершенные процессоры содержали миллионы транзисторов. К моменту начала выпуска Merced компания Intel перешла на 0.18-микронную технологию вместо нынешней 0.25-микронной. Уже первые чипы архитектуры IA-64 содержали десятки миллионов транзисторов.

Проблему ещё осложняет тот факт, что микросхемы памяти не успевают за тактовой частотой процессоров. Когда Intel разработала архитектуру х86, процессор мог извлекать данные из памяти с такой же скоростью, с какой он их обрабатывал. Сегодня процессор тратит сотни тактов на ожидание загрузки данных из памяти, даже несмотря на наличие большой и быстрой кэш-памяти.
Команды в формате IA-64 упакованы по три в 128-битный пакет для быстрейшей обработки. Обычно это называют "LIW encoding". (Русский аналог подобрать сложно. Наиболее адекватно, на мой взгляд, перевести как "кодирование в длинные слова команд".) Однако компания Intel избегает такого названия, заявляя, что с ним связаны "негативные ассоциации" (negative connotation).
По той же причине Intel не любит называть сами команды RISC-подобными (RISC- like), даже несмотря на то, что они имеют фиксированную длину и предположительно оптимизированы для исполнения за один такт в ядре, не нуждающемся в микрокоде. Intel предпочитает называть свою новую LIW- технологию Explicitly Parallel Instruction Computing или EPIC (Вычисления с
Явной Параллельностью Инструкций, где "явной" означае явно указанной при трансляции). В любом случае формат команд IA-64 не имеет ничего общего с х86. Команды х86 могут иметь длину от 8 до 108 бит, и процессор должен последовательно декодировать каждую команду после определения её границ.
Каждый 128-битный пакет содержит шаблон (template) длиной в несколько бит, помещаемый в него компилятором, который указывает процессору, какие из команд могут выполняться параллельно. Теперь процессору не нужно будет анализировать поток команд в процессе выполнения для выявления "скрытого параллелизма". Вместо этого наличие параллелизма определяет компилятор и помещает информацию в код программы. Каждая команда (как для целочисленных вычислений, так и для вычислений с плавающей точкой) содержит три 7-битных поля регистра общего назначения (РОН). Из этого следует, что процессоры архитектуры IA-64 содержат 128 целочисленных РОН и 128 регистров для вычислений с плавающей точкой. Все они доступны программисту и являются регистрами с произвольным доступом (programmer-visible random-access registers). По сравнению с процессорами х86, у которых всего восемь целочисленных РОН и стек глубины 8 для вычислений с плавающей точкой, IA-64 намного "шире" и, соответственно, будет намного реже простаивать из-за
"нехватки регистров".
Компиляторы для IA-64 будут использовать технологию "отмеченных команд"
(predication) для устранения потерь производительности из-за неправильно предсказанных переходов и необходимости пропуска участков кода после ветвлений. Когда процессор встречает "отмеченное" ветвление в процессе выполнения программы, он начинает одновременно выполнять все ветви. После того, как будет определена "истинная" ветвь, процессор сохраняет необходимые результаты и сбрасывает остальные.
Компиляторы для IA-64 будут также просматривать исходный код с целью поиска команд, использующих данные из памяти. Найдя такую команду, они будут добавлять пару команд - команду предварительной загрузки (speculative loading) и проверки загрузки (speculative check). Во время выполнения программы первая из команд загружает данные в память до того, как они понадобятся программе. Вторая команда проверяет, успешно ли произошла загрузка, перед тем, как разрешить программе использовать эти данные.
Предварительная загрузка позволяет уменьшить потери производительности из- за задержек при доступе к памяти, а также повысить параллелизм.

3. Особенности архитектуры Alpha компании DEC

В настоящее время семейство микропроцессоров с архитектурой Alpha представлено несколькими кристаллами, имеющими различные диапазоны производительности, работающие с разной тактовой частотой и рассеивающие разную мощность. Первым на рынке появился 64-разрядный микропроцессор Alpha
(DECchip 21064) . Он представляет собой RISC-процессор в однокристальном исполнении, в состав которого входят устройства целочисленной и плавающей арифметики, а также кэш-память емкостью 16 Кб. Кристалл проектировался с учетом реализации передовых методов увеличения производительности, включая конвейерную организацию всех функциональных устройств, одновременную выдачу нескольких команд для выполнения, а также средства организации симметричной многопроцессорной обработки. В кристалле имеются два регистровых файла по
32 64-битовых регистра: один для целых чисел, второй - для чисел с плавающей точкой. Для обеспечения совместимости с архитектурами MIPS и VAX архитектура Alpha поддерживает арифметику с одинарной и двойной точностью как в соответствии со стандартом IEEE 754, так и в соответствии с внутренним для компании стандартом арифметики VAX. Самая мощная модель процессора 21064 работает на частоте 200 МГц. В конце 1993 года появилась модернизированная версия кристалла - модель 21064А, имеющая на кристалле кэш-память удвоенного объема и работающая с тактовой частотой 275 МГц.
Затем были выпущены модели 21066 и 21068, оперирующие на частоте 166 и 66
МГц. Отличительной особенностью этой ветви процессоров Alpha является реализация на кристалле шины PCI. Это существенно упрощает и удешевляет как проектирование, так и производство компьютеров. Отличительная особенность модели 21068 - низкая потребляемая мощность (около 8 ватт). Основное предназначение этих двух новых моделей - персональные компьютеры и одноплатные ЭВМ. На рисунке 3. представлена блок-схема микропроцессора
21066. Основными компонентами этого процессора являются: кэш-память команд, целочисленное устройство, устройство плавающей точки, устройство выполнения команд загрузки/записи, кэш-память данных, а также контроллер памяти и контроллер ввода/вывода.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.