Рефераты. Система управления аппаратом производства фотографической эмульсии

Система управления аппаратом производства фотографической эмульсии

Министерство образования Российской Федерации

Кубанский государственный технологический университет

Кафедра …

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по предмету локальные системы автоматики

тема курсового проекта:

«Разработка локальной системы управления промышленным объектом».

Выполнил
: студент гр. ??–??–??

номер зачётной книжки ??–??–???

Руководитель : доц. каф. ??

Краснодар

2001

Министерство образования Российской Федерации

Кубанский государственный технологический университет

ЗАДАНИЕ


На курсовой проект …

Студенту группы ??–??–??

По дисциплине Локальные системы автоматики

Тема курсового проекта Разработка локальной системы

управления промышленным объектом

Исходные данные Объект автоматизации – аппарат для

производства фотографической эмульсии. Общая емкость – 700 л,

длительность процесса – 1.2 ч. В ходе процесса необходимо

поддерживать постоянную температуру и избыток ионов Br-.


1 Выполнить задания:

1.1 Анализ и моделирование объекта управления

1.2 Обоснование структуры и расчет системы управления

1.3 Выбор технических средств


2 Выполнить графические работы:

2.1 Выполнить лист результатов исследования объекта и системы

2.2 Выполнить схему автоматизации

3 Оформить расчётно-пояснительную записку

4 Основная литература

Основы технологии светочувствительных материалов. Под ред.

проф. Шеберстова. – М.: Химия, 1977. – 504 с.

Задание выдано 27.02.2001

Срок сдачи проекта 17.05.2001

Задание принял

Руководитель …

Проект защищен

С оценкой

ЧЛЕНЫ КОМИССИИ :

РЕФЕРАТ

ЛОКАЛЬНАЯ СИСТЕМА АВТОМАТИКИ, РЕГУЛИРУЕМАЯ ВЕЛИЧИНА, РЕГУЛИРУЮЩЕЕ
ВОЗДЕЙСТВИЕ, РЕГУЛЯТОР, КАЧЕСТВО РЕГУЛИРОВАНИЯ, ОПТИМАЛЬНАЯ НАСТРОЙКА,
НАДЕЖНОСТЬ СИСТЕМЫ.

Курсовой проект содержит 49 страниц, 28 рисунков, 4 источника.

В данном курсовом проекте рассмотрен вопрос синтеза локальной системы управления установкой для получения фотографической эмульсии. В работе произведен анализ объекта регулирования, построены передаточные функции объекта по каналам управления и возмущения, на основе чего были обоснованы структура и параметры системы управления. Число регулируемых величин у объекта – 2, число контролируемых – 4 (в их число входят и регулируемые величины). Элементы и устройства системы регулирования были выбраны из числа серийно выпускаемых отечественной промышленностью. В работе были также рассчитаны погрешность комплектов, применяемых для измерения регулируемых величин, а также надежность одного из комплектов.

СОДЕРЖАНИЕ

Введение
........................................................................5

Функциональный и технико-экономический анализ объекта управления

.................................................................6

1. Сведения о строении фотопленок

...................................6

2. Краткие сведения об аппарате эмульсификации.................7

Моделирование объекта управления................................10


3 Получение модели по величине pBr ...............................10


4 Получение тепловой модели .........................................14

Выбор и обоснование регулируемых величин и регулирующих воздействий

...............................................................24

Формирование структуры системы управления.................25

Расчет элементов и параметров системы..........................28

3. Расчет и выбор регулирующего органа для расхода воды....28

4. Выбор регулирующего органа для расхода реагентов........30

5. Расчет и выбор измерительных преобразователей..............31

1. Выбор комплекта для измерения pBr ...........................31

2. Выбор комплекта для измерения температуры...............32

6. Выбор и обоснование регуляторов. Расчет настроек. .........34

1. Расчет регулятора для pBr

........................................35

2. Расчет регулятора для температуры

..........................39

Выбор технических средств

...........................................44

Заключение............................................................
.........46

Список литературы
...........................................................47

Приложение А
.................................................................48

ВВЕДЕНИЕ

В работе рассмотрена часть процесса промышленного производства фотографической эмульсии. Следует отметить, что полный технологический цикл этого производства состоит из большого количества стадий, и рассмотренный в данной работе процесс представляет собой только совмещенные друг с другом первые две стадии: эмульсификация и первое (физическое) созревание.
Процессы студенения, измельчения и полива фотографической эмульсии в данной работе не рассматриваются из-за того, что для каждого из них необходима своя локальная система, а для координации работы необходимо использовать систему управления более высокого уровня в иерархии управления.

Установлено, что для получения качественного продукта необходимо поддерживать достаточно жесткий режим для многих технологических параметров процесса. Например, отклонение температурного режима на 20% от номинального может привести не только к значительному ухудшению качества, но и к необратимой порче продукта. Поэтому применение автоматической системы регулирования в данном случае становится просто необходимым.

1. ФУНКЦИОНАЛЬНЫЙ И ТЕХНИКО-ЭКОНОМИЧЕСКИЙ АНАЛИЗ ОБЪЕКТА УПРАВЛЕНИЯ

1. Сведения о строении фотопленок

Вначале кратко опишем схему строения фотографического галогеносеребряного светочувствительного материала (см. рисунок 1.1)

Рисунок 1.1 – Строение галогеносеребряной эмульсии

Цифрой 1 обозначен верхний защитный слой из хорошо задубленной желатины. Фотографическая желатина – это основная коллоидная среда для эмульсий. Она представляет собой сложное вещество белковой природы, получаемое при гидролизе коллагена. Под защитным слоем находится наиболее важная составная часть фотографического материала – светочувствительный или эмульсионный слой 2; в нем протекают все процессы, приводящие в конечном результате к образованию фотографического изображения. Эмульсионный слой представляет собой пленку воздушно-сухой желатины, в которой во взвешенном состоянии находятся микрокристаллы галогенида серебра (чаще всего AgBr с некоторой примесью AgI или AgCl), так называемые эмульсионные зерна
(эмульсионные кристаллы); толщина эмульсионного слоя для разных фотоматериалов различна и лежит в диапазоне от 4 до 25-30 мкм.

Эмульсионный слой скреплен с подложкой 5 при помощи подслоя 4 – желатинового слоя с добавками дубителя и веществ, способствующих склеиванию эмульсионного слоя и подложки; толщина подслоя ~ 1 мкм. Подложка представляет собой гибкую пленку, бумагу или стекло; гибкая пленочная подложка называется обычно основой. На основу со стороны, обратной эмульсионному слою, иногда бывает нанесен противослой 6, препятствующий скручиванию пленки.

Наиболее важной составной частью фотографического материала являются эмульсионные кристаллы: они поглощают свет, в них образуется скрытое изображение, они в процессе проявления превращаются в зерна серебра, создающие почернение слоя и, следовательно, в конечном результате видимое фотографическое изображение.

2. Краткие сведения об аппарате эмульсификации

В процессе получения фотографических галогеносеребряных эмульсий, проводимом в механизированной аппаратуре периодического действия, различают следующие стадии [1, с.61-64]:

1) подготовка и дозирование сырьевых материалов (желатины, нитрата серебра, хлорида натрия, бромида и йодида калия или аммония, водного аммиака, дистиллированной воды) и приготовление растворов этих веществ;

2) эмульсификация;

3) первое, или физическое созревание эмульсии;

4) стадия перехода от первого созревания ко второму;

5) второе, или химическое созревание;

6) завершающая стадия (студенение, измельчение, расфасовка);

7) хранение готовой эмульсии.

Рассмотрим более подробно вторую стадию процесса.

Эмульсификация состоит в образовании твердой фазы галогенидов серебра в результате реакции двойного обмена между нитратом серебра (или аммиакатом серебра при аммиачном способе) и галогенидами щелочных металлов или аммония в присутствии защитного коллоида – желатины:

[pic]

[pic]

При эмульсификации образуется пересыщенный раствор галогенида серебра, выделяются центры кристаллизации и начинается процесс кристаллизации эмульсионных зерен (эмульсионных микрокристаллов). Условиями образования галогенида серебра определяются конечные свойства фотографической эмульсии.

Опишем наиболее современный из применяющихся на сегодняшний день аппаратов для эмульсификации, построенный по двухструйной схеме (см. рисунок 1.2).

Эмульсификация и первое созревание проводится при непрерывной циркуляции эмульсии из аппарата первого созревания через реакционную камеру смесителя с малой зоной перемешивания и эффективной мешалкой. Смеситель 3 выполняет одновременно роль эмульсификатора и насоса для циркуляции потока.
В смеситель из сборников-термостатов 1 дозирующими насосами 2 непрерывно подают растворы нитрата серебра и галогенида щелочного металла.
Предварительно в аппарате готовят раствор эмульсификационной

Рисунок 1.2 – Общая схема установки двухструйной эмульсификации

желатины, который с помощью водяной рубашки подогревают до температуры ~ 45 єC. При включении мешалки смесителя раствор желатины засасывается из аппарата 4 по трубопроводу и поступает в смеситель, где смешивается с растворами реагентов; в результате в эмульсификационной среде возникают зародыши микрокристаллов галогенида серебра. В дальнейшем в аппарате 4 образуется фотографическая эмульсия, которая непрерывно циркулирует через зону смешения в смесителе 3 и обогащается новыми образованиями галогенида серебра, одновременно с течением кристаллизационного процесса в потоке, проходящем через накопитель
4 и смеситель 3. Процесс ведут при работающей мешалке 5.

Главными условиями получения качественной эмульсии являются:

- поддержание в реакционной среде избытка ионов галогена;

- поддержание постоянного температурного режима.

Опишем более подробно стадии процесса и приведем численные значения основных характеристик процесса.

1) введение желатины 2%-раствора в течение 3-5 мин;

2) включение циркуляционного насоса. Расход – 10 м3/ч;

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.