Рефераты. Розрахунок технічних параметрів радіолокаційної станції (РЛС)

Склавши елементи кожного вертикального стовпця, визначимо значення автокореляційної функції цієї послідовності в дискретних точках.

Побудувавши ці значення на графіку, отримаємо автокореляційну функцію послідовності, яка відрізняється від нормованої автореляційної функції лише масштабом по осі ординат.

Викладена методика є по суті матричним представленням виразу:


 (2.7)


Графік автокореляційної функції сигналу представлений на рис.3:


Рис.3


2.3 Функціональні схеми пристроїв генерації та обробки зондуючого сигналу


Сигнал, маніпульований за фазою на  по закону коду Баркера можливо отримати порівняно простими засобами. Для цього можливо використати балансний модулятор (БМ), що живиться від генератора високої частоти (ГВЧ) і маніпульований послідовністю відеоімпульсів, що кодуються, які відтворюють закон зміни комплексної амплітуди сигналу:



Послідовність же кодованих амплітуд сигналу можна отримати шляхом алгебраїчного (з врахуванням полярності) сумування імпульсів, знятих з відводів лінії затримки загальної тривалості , на вхід якої поступає прямокутний імпульс тривалості . Лінія затримки має  відводів, які забезпечують затримку на величину кратну. Імпульси отримані з початку лінії, з усіх кінців відводів та кінця лінії, складаються у суматорі з вагою, що відповідає значенню члену  коду Баркера. В наслідку цього підсумування з’являється послідовність кодованих відео імпульсів (рис.5).

Функціональна схема такого пристрою приведена на рис.4 (ГОИ - генератор одиночного імпульсу):


Рис.4


Рис.5


При маніпулюванні послідовністю відеоімпульсів балансного маніпулятора і подачі на його вхід коливань високої частоти на його виході з’являється сигнал, фаза якого маніпульована за законом кода Баркера.

Слід замітити, що розглянута вище методика розрахунку автокореляційної функції огинаючої фазоманіпульованого сигналу детально відтворює механізм проходження цієї огинаючої крізь багатовідвідну лінію затримки і суматор із дзеркальним відносно коду сигналу законом підсумування сигналу у відводах. Лінія затримки і суматор (рис.5) входять до складу РОФОС (радіочастотного оптимального фільтру для одиночного сигналу).


Рис.6



3. Розрахунок реальної розрізняльної здатності та потенційної і реальної точності


Розглянемо одноканальну імпульсну некогерентну РЛС кругового огляду, структурна схема якої має вигляд (рис.3.1).


Рис.3.1 Структурна схема РЛС кругового огляду


Такі станції дозволяють виявляти цілі та визначати їхню дальність  і азимут  у межах зони огляду, обмеженою максимальною дальністю  та шириною ДС у вертикальній площині . По азимуту ДС обертається з постійною швидкістю, здійснюючи за час одного оберту  круговий огляд.

Для візуальної індикації двох координат цілі необхідний двовимірний індикатор кругового огляду (ІКО) з яскравістною оцінкою цілі. В ІКО звичайно застосовується ЕПТ із електромагнітним відхиленням променів. Імпульсні сигнали з виходу приймача подаються на керуючий електрод ЕПТ і збільшують яскравість світіння екрана під час їхньої появи.

Розгорнення дальності здійснюється за допомогою котушки, що відхиляє, що створює магнітне поле, що рівномірно переміщає електронний промінь від центра екрана ЕПТ до краю по радіусу. Азимутальне розгорнення, тобто кругове обертання променя, що розгортає, дальності синхронно з антеною, створюється або обертанням котушки, що відхиляє, за допомогою системи дистанційної передачі кута (СДПК), або за допомогою спеціально формованих напруг, що відхиляють, живильні нерухомі котушки, що відхиляють. У якості СДПК часто використається слідкуюча сельсинна система із грубим і точним каналами, що забезпечують досить високу точність передачі.

Механізм формування зображення на екрані ЕПТ пояснюється рис.3.2:


Рис.3.2 Механізм формування зображення на екрані ЕПТ


При обертанні антени, коли починається опромінення цілі (напрямок 1), на відповідному радіусі розгорнення під дією імпульсу цілі виникає яскрава крапка (амплітуда сигналу характеризується відрізком АВ діаграми спрямованості). На розгорненні також є менш яскраві масштабні крапки.

Обертання антени по годинній стрілці рівносильно переміщенню цілі у зворотному напрямку, так, що вона послідовно займає напрямки 2' і 3'. Радіуси розгорнення на ІКО займають відповідне положення 2 і 3 і на них виникають яскраві оцінки від цілі (амплітуди яких характеризуються відрізком АС і АД).

Після повного оберту антени на екрані утворяться масштабні кільця (електронна шкала дальності), а ціль буде мати вигляд невеликої дуги, кутові розміри якої приблизно дорівнюють кутовій ширині лугу антени.

Дальність до цілі відраховується за допомогою масштабних кілець. Азимут же відраховується по положенню середини її оцінки щодо якого-небудь початкового напрямку, наприклад північного напрямку меридіана (на рис 3.2 це напрямок 3, що відповідає максимуму ДС антени).

Для пояснення взаємодії елементів структурної схеми РЛС розглянемо часові діаграми сигналів (рис.3.3).


Рис 3.3 Часові діаграми сигналів

Пристроєм, що забезпечує погоджену в часі роботу всіх елементів РЛС, є синхронізатор, що складається з високостабільного опорного генератора ОГ, коливання якого заданої частоти й форми (звичайно синусоїдальної) є вихідними для формування пускових імпульсів ФПІ з необхідною тривалістю й частотою повторення , у тому числі імпульсів запуску модулятора М и розгорнення дальності РД. Імпульси модулятора визначають тривалість  і частоту повторення  високочастотних імпульсів, генерованих генератором високої частоти ГВЧ (магнітронного, клістронного типу). Через антенний перемикач АП, що блокує вхід приймача на час , високочастотні коливання надходять на антену й випромінюються нею в напрямку мети. По закінченні випромінювання імпульсу й відновлення чутливості прийомного тракту (час відновлення ) РЛС готова до прийому відбитих сигналів за допомогою тієї ж антени.

Таким чином, тривалість зондувального імпульсу  й час відновлення чутливості прийомного тракту  обмежують мінімальну дальність дії (мертву зону) РЛС:


 (4.1)


Прийнятий радіосигнал підсилюється й детектується в приймачі РЛС і у вигляді відеоімпульсу, посиленого відео підсилювачем ВП в ІКО, надходить на моделюючий електрод (сітку або катод) ЕПТ. Обертання лінії розгорнення синхронно з обертанням ДС антени за допомогою схеми РА, керованого від датчика положення антени ДПА.

Обертання ДС антени здійснюється пристроєм обертання антени ПОА, яким звичайно є електродвигун з редуктором.

Відеосигнали приймача за допомогою пристрою первинної обробки інформації ППОІ відокремлюються від перешкод і після перетворення в цифрову форму пристроєм, що кодує, передаються в ЕОМ для вторинної обробки, що полягає в побудові траєкторії руху цілей.

 

3.1 Розрахунок реальної розрізняльної здатності за віддалю та азимутом


Оберемо ЕПТ 31ЛМ5В, яка має слідуючи характеристики:

 - діаметр екрана;

 - діаметр плями;


Реальна розрізняльна здатність по віддалі визначається як:


, (3.1)


де  і  відповідно потенційна та інструментальна розрізняльні здатності.

При використанні індикатора колового огляду (ІКО):


, (3.2)


де  - діаметр плями на екрані електронно-променевої трубки (ЕПТ),  - масштаб віддалі на екрані ЕПТ. Враховуючи, що масштаб віддалі:


, (3.3)


де  - коефіцієнт використання екрану ЕПТ ІКО;

 - діаметр екрану;

 - інтервал віддалі, яку можна оглянути на індикаторі, одержимо:


, (3.4)


де  - добротність (якість фокусування) ЕПТ.

Отже отримаємо:


 (3.5)

 (3.6)


Реальна розрізняльна здатність по кутовій координаті (азимуту) розраховується за формулою:


, (3.7)


де  - відповідно потенційна та інструментальна розрізняльна здатність.

При використанні ІКО:


, (3.8)


де  - діаметр плями ЕПТ;  - масштаб по азимуту.

Масштаб по азимуту в ІКО являється функцією відстані позначки цілі від центра екрану і визначається як:

, (3.9)


де  - відстань позначки цілі від центра екрану.

Враховуючи (53), формулу (52) можна записати у вигляді:


 (3.10)

де

 -


відповідно, діаметр плями і відстань позначки цілі від центра екрану, які перераховані в справжні відстані.

Отже, отримаємо:


. (3.11)


Із (3.9) видно, що розрізняльна здатність по азимуту в ІКО залежить від віддалі до цілі. Розрізняльна здатність по азимуту тим вища, чим дальше ціль. Біля центру екрану розрізняльна здатність дуже низька.


3.2 Розрахунок потенційної і реальної точності виміру віддалі і азимуту


Потенційна точність визначає граничну точність вимірювання, що може бути досягнута, і залежить тільки від відношення сигнал/шум та форми зондуючого сигналу. Відношення сигнал/шум одного імпульсу:

 (3.12)


Дисперсія потенційної похибки виміру віддалі розраховується за формулою:


 (3.13)


Середньоквадратичне значення потенційної похибки виміру кутової координати (азимуту) при умові, що діаграма спрямованості має дзвоноподібну форму, а пеленгація в РЛС колового огляду виконується методом максимуму, визначається співвідношенням:


 (3.14)


Середньоквадратичне значення результуючої похибки виміру будь-якої координати визначатиметься формулою:


, (3.15)


де  - потенційна похибка, яка розраховується за приведеними вище формулою,  - похибка, що викликана викривленням траєкторії розповсюдження радіохвиль,  - похибка, що обумовлена значенням точності в -му вузлі РЛС,  - загальна кількість вузлів.

В багатьох випадках похибки, що обумовлені скривленням траєкторії радіохвиль, можна не враховувати, а із апаратурних похибок враховувати тільки похибки вихідного пристрою. Отже:


 (3.16)


де інструментальна точність виміру віддалі при використанні ІКО в основному визначається стабільністю початку розгортки, постійністю швидкості розгортки та точністю відліку віддалі на індикаторі.

Середньоквадратичне значення похибки виміру віддалі при урахуванні тільки похибки відліку визначається як:


 (3.17)


де

і  - відстань між електронними позначками віддалі на екрані ЕПТ.

Середньоквадратична реальна похибка за дальністю:


 (3.18)

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.