Рефераты. Разработка устройства автоматического регулирования света на микроконтроллере

- управление только одним каналом;

- отсутствие стабилизации яркости;

- наличие помех радиоприёму, звон нитей ламп, жужжание встроенного фильтра.

Эти же недостатки присущи схемам, опубликованным в радиолюбительской литературе, периодической печати и в Интернете.


2.1 Постановка задачи


Требуется создать регулятор яркости ламп накаливания (за рубежом называемый «диммер» - dimmer), свободный от указанных недостатков, и предназначенный для установки в двухканальный светильник промышленного производства (Рис. 1).

Разработка устройства велась с учётом следующих требований:

- простота схемы (минимальное количество компонентов);

- функциональная насыщенность, многообразие регулируемых параметров;

- устойчивость к броскам сетевого напряжения, долговечность;

- отсутствие либо минимальный нагрев компонентов (пожаробезопасность);

- низкое энергопотребление.


Рисунок 2.1 – Светильник с встроенным устройством автоматического регулирования света


2.2 Разработка структурной схемы устройства и функциональной спецификации


Структурная схема устройства автоматического регулирования света представлена на рисунке 2.2.

Устройство состоит из основных элементов:




 ~ 220 В

 





Управление каналом

SB1 «1» HL1


Управление каналом

SB2 «2» HL2

 




Рисунок 2.2 – Структурная схема устройства автоматического регулирования света

МК – микроконтроллер (устройство, выполняющее функции управления устройствами управления);

БП – блок питания (осуществляет питание микроконтроллера и устройств управления требуемыми напряжениями);

УУ1, УУ2 – устройство управления 1-ого и 2-ого канала соответственно (осуществляют силовое управление лампами освещения по заданной программе);

SB1, SB2 – кнопки управления 1-ым и 2-ым каналами (осуществляют управление каналами освещения, по заданной программе);

HL1, HL2 – лампы освещения (освещают помещение в различных режимах и требуемой яркости).


Функциональная спецификация:

1. Входы

а. SB1, SB2 – кнопки управления 1-ым и 2-ым каналами, соответственно;

b. источник электропитания устройства (БП).

2. Выходы

а. УУ1, УУ2 – устройство управления 1-ого и 2-ого канала, соответственно .

3. Функции

а. Кнопками управления SB1 и SB2 осуществляется управление программой микроконтроллера;

b. По выбранной программе, осуществляется управление устройствами управления УУ1 и УУ2, которые осуществляют регулировку подачи регулируемого напряжения на лампы накаливания HL1 и HL2.


2.3 Разработка функциональной схемы


Основу устройства, функциональная схема которого изображена на Рис. 2.3, составляет микроконтроллер ATmega16L семейства AVR корпорации ATMEL. Управление осуществляется двумя не фиксируемыми в нажатом положении кнопками, по одной на каждый канал.


~220В F1

 


Стабилизатор

 
 Rб

Фильтр

 
 

 




 «+»

Транзистор 2

 

Транзистор 1

 

Рисунок 2.3 - Функциональная схема устройства автоматического регулирования света


Регулировка мощности основана на реверсивном принципе управления фазой. Нагрузка включается в каждом полупериоде сети в момент перехода сетевого напряжения через нуль и выключается через определённый интервал времени в зависимости от требуемого уровня яркости. Коммутация нагрузки осуществляется мощными MOSFET транзисторами (Транзистор1 и Транзистор2 на Рис.2.3). Такое решение имеет целый ряд преимуществ перед классической схемой прямого фазового регулирования на основе триака:

- "мягкое" управление транзистором позволяет снизить уровень помех и звон нити лампы – не нужен громоздкий сетевой фильтр, снижающий эффективность и зачастую являющийся источником неприятного жужжания;

- благодаря нарастанию напряжения с нуля и малому звону нити, лампы служат намного дольше;

- для управления MOSFET транзистором требуется гораздо меньший ток;

- более низкое падение напряжения на переходе транзистора сокращает тепловыделение;

- отсутствие понятия "ток удержания" позволяет плавно регулировать малую яркость.

Диодный мост выполняет три функции:

- создаёт пульсирующее однополярное напряжение для питания нагрузки;

- выпрямляет сетевое напряжение для питания схемы;

- обеспечивает сетевое напряжение удвоенной частоты (100 Гц), используемое МК для определения момента перехода фазы сети через нуль.

Детектирование перехода сетевого напряжения через нуль осуществляется тем же делителем напряжения и тем же каналом встроенного в МК АЦП, которые предназначены для измерения напряжения на лампе. Это позволяет отказаться от встроенного в МК компаратора и уменьшить тем самым потребляемый ток. Фильтрация сетевых помех реализуется программно.

Блок питания выполнен по бестрансформаторной схеме с гасящим резистором (балластом). Строить блок питания по трансформаторной схеме тоже не получится, т.к. не существует сетевых трансформаторов, которые подходили бы по габаритам (максимально допустимая высота 13 мм).

В качестве регулирующего элемента применён прецизионный микромощный источник опорного напряжения +5 В параллельного типа (далее по тексту ИОН). По сравнению с обычным стабилитроном, выбранный ИОН имеет два важных преимущества. Во-первых, одновременно со стабилизацией питания МК получается стабильное опорное напряжение АЦП [3]. Во-вторых, на порядок уменьшается потребляемый регулирующим элементом ток (примерно с 1 мА до 0,1 мА).

Устройство имеет защиту от короткого замыкания, превышения мощности нагрузки и повышения сетевого напряжения.


2.4 Разработка алгоритма управления


Программа составлена и отлажена в бесплатной среде разработки VM Lab версии 3.14 (в окне 'About Visual Micro Lab' эта версия указана как 3.12).

Код программы написан на языке ассемблера, содержит более 1500 строк, занимает в памяти программ МК более 3 КБ. Задействованы все 32 регистра, 51 байт оперативной памяти (SRAM, ОЗУ), 45 байт энергонезависимой памяти EEPROM.

На первый взгляд, возможности МК ATmega16, имеющего 16 КБ программной памяти, 1 КБ SRAM, 512 байт EEPROM, и богатый набор периферийных устройств, кажутся избыточными. На самом деле, выбор МК "с запасом" сделан умышленно, чтобы иметь возможность совершенствовать устройство и наращивать его функциональные возможности.

При необходимости код может быть перенесён на другие МК семейства ATmega.

Алгоритм управления показан на Рис.2.4. Каждый блок начинается с названия файла, в котором размещён программный код данного блока. Подпрограммы обозначены блоком меньшего горизонтального размера. Среди них есть функции, т.е. подпрограммы, возвращающие значения. Для упрощения они тоже называются подпрограммами. Отличие подпрограмм, расположенных в файле ProceduresINT.asm, от подпрограмм в файле ProceduresEXT.asm заключается в том, что первые предназначаются только для данного проекта, а вторые являются универсальными и могут найти применение в других проектах. Блок Startup.asm тоже использует некоторые подпрограммы, но для упрощения восприятия рисунка эти связи на блок-схеме не показаны.


2.5 Разработка программного обеспечения микроконтроллера


Далее кратко рассмотрены ключевые моменты программной части проекта. Дополнительная информация содержится в комментариях, которыми снабжена практически каждая строка программы. Листинг программы и объектный файл приведен в Приложении А. Алгоритм работы второго канала полностью аналогичен алгоритму работы первого, поэтому комментарии приводятся только для первого канала. По этой же причине в названиях регистров, процедур и т.п. номер канала либо не указывается совсем, либо обозначается буквой "X" или "x". Команды, начинающиеся с символа комментария (";") в начале строки, предназначены для облегчения разработки, отладки и тестирования.


Рисунок 2.4 – Блок-схема алгоритма

 
 





























Они ускоряют ход выполнения программы на этапе отладки. Закомментированные команды, перед которыми есть несколько знаков пробела, не используются в данном проекте, но оставлены в качестве шаблона для применения того же кода в других проектах. Для поддержания совместимости символы табуляции заменены знаками пробела.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.