Рефераты. Разработка технологии сборки и монтажа ячейки трехкоординатного цифрового преобразователя перемещения

Очистные жидкости предназначены для отмывки изделий от флюса после пайки. При выборе очистной жидкости следует учитывать состав остатков, ее растворяющую способность, рабочую температуру, время и условия отмывки, влияние на элементы конструкции, токсичность и пожароопасность. Водорастворимые флюсы отмывают в проточной горячей (60..800°С) и холодной воде с помощью мягких щеток. Канифольные флюсы в процессе индивидуальной пайки промывают этиловым (изопропиловым) спиртом; при групповой пайке применяют ультразвуковую очистку или очистку щетками в спирто-бензиновой смеси (1:1); трихлорэтилене или хлористом метилене. Хорошие результаты достигаются при использовании фреона или смесей на его основе. Но он экологически опасен [10].

Для ячейки ИММТ больше всего подходит спирто-безиновая смесь. Она относительно дешевая и доступная.

Выбор клея

Выбор адгезива в первую очередь определяется методом его нанесения на плату. Принципиальным моментом в определении пригодности выбранного адгезива является его способность формироваться в виде капли, заполняющей самый большой встречающийся промежуток между компонентом и платой и в то же время не растекающейся из-под самых малогабаритных компонентов после нанесения. Адгезив должен быть относительно жидким для удобства нанесения из шприца при минимальном давлении и в то же время быть достаточно вязким, чтобы не вытекать самопроизвольно и не оставлять следа. Также очень важно время отверждения адгезива и его свойства после отверждения. Все эти требования необходимо учитывать при выборе адгезива.

Перспективными являются адгезивы, представляющие собой акрилатноэпоксидную систему, отверждающуюся при воздействии ультрафиолетового (УФ) излучения с последующей термообработкой в конвекционной или ИК печи в течении 3–5 мин. при температуре менее 383 К. Однако чаще всего для ПМК применяются клеи на основе эпоксидных смол, которые имеют довольно низкую температуру отверждения, малый уровень ионных загрязнений, малые деформации при сдвиге и большую прочность, чем припои [3].

Защитные покрытия

При разработке ЭУ, необходимо учитывать защиту коммутационных компонентов КП от затекания на них припоя из зоны пайки, чтобы избежать случайных замыканий. Кроме того, защитное (конформное покрытие) предохраняет поверхность платы от механических повреждений, проникновения влаги, загрязнений (особенно ионогенных) и др.

Климатические факторы, влияющие на процессы деградации в микроэлектронной аппаратуре (МЭА) (см. рис. 19), достаточно взаимосвязаны между собой и весьма сильно ускоряют протекание разрушающих электрохимических реакций. В нормальных климатических условиях процессы деградации протекают медленнее [10].

Печатные узлы повышенной надежности должны выдерживать следующие воздействия атмосферной среды:

· повышенная влажность в течение длительного времени;

· частые перепады температуры;

· химические загрязнения (сернистый газ, хлориды, аммиак);

· солнечная радиация.

Влагозащитные покрытия призваны уменьшить влияние этих факторов на деградационные процессы в МЭА [2].

Для обеспечения защиты смонтированного ЭУ в качестве конформного покрытия рекомендуется использовать парилен, который можно наносить на всю поверхность КП после монтажа на ней компонентов.

Чаще всего материалами защитных покрытий являются лаки на основе полиуретановых, эпоксиамидных и других органических смол.


6. Разработка алгоритма реализации основных этапов ТП сборки и монтажа ячейки ИММТ

 

На основании выбранных материалов и оборудования для сборки и монтажа ячейки ИММТ можно составить алгоритм реализации основных этапов технологического процесса ее изготовления. Разработка данного ТП осуществляется с целью определения наиболее рационального способа изготовления устройства с учетом полного использования технических возможностей производства при наименьших затратах труда.

Сборка и монтаж ячейки ИММТ осуществляется по варианту 3 г. (см. рис. 4). Начальным является этап входного контроля компонентов. Компонент, не прошедший входной контроль, отправляется в изолятор брака, с последующим предъявлением претензий производителю. Компоненты, прошедшие контроль подготавливаются к установке на ПП. После подготовительных операций всех компонентов и ПП осуществляется трафаретная печать припойной пастой с одной стороны ПП и сборка ПМК с фиксацией. Далее осуществляется операция контроля качества сборки, которая призвана проверить качество трафаретной печати, точность позиционирования ПМК и др. Затем после операции контроля качества осуществляется переворот ПП, и припойная паста наносится через трафарет со второй стороны ПП. Затем осуществляется сборка ПМК на второй стороне ПП с фиксацией. После очередной операции контроля качества произведенной сборки осуществляется операция монтажа ПМК на ПП с двух сторон ПОДП с комбинированным нагревом. Затем в ручную на ПП устанавливаются ТМК и прочие конструктивы. Их монтаж осуществляется с помощью паяльной станции. Необходимо отметить, что после каждой операции монтажа необходимо применять операции очистки смонтированного объекта для удаления остатков флюса и других загрязнений, чтобы максимально исключить их влияние на характеристики изготавливаемого изделия. Затем, производят нанесение влагозащитных покрытий с целью уменьшения вероятности возникновения коротких замыканий, дендритов, грибковых образований и т.д. Затем осуществляется выходной контроль всего изделия. Следует отметить, что после каждой контрольной операции изделие, не прошедшее контроль, отправляется в изолятор брака, где выявленный дефект пытаются устранить. Изделия с не устранимыми дефектами отправляются в изолятор брака, а исправленные изделия передаются на технологические операции.

Для гарантии качества и надежности ячейки необходимо максимально автоматизировать сборочно-монтажные работы, а также операции контроля с применением автоматизированных систем управления (АСУ). Все эти требования были учтены при создании алгоритма для ячейки ИММТ.


7. Оценка технологичности ячейки ИММТ


Исходные данные для оценки технологичности ячейки ЭУ приведены в табл. 8.

 

Таблица 8. Исходные данные для оценки технологичности ячейки ИММТ

№ п/п

Исходные данные

Обозначения

Численные значения

1

Количество монтажных соединений, получаемых с применением автоматизации

НА

805

2

Общее число монтажных соединений

НМ

819

3

Общее количество ИС в ячейке

НИС

40

4

Общее количество ПМК в ячейке

НПМК

805

5

Количество ПМК, подготовка которых автоматизирована

НАПпмк

805

6

Общее количество операций контроля и регулировки ячеек

НКР

11

7

Общее количество типоразмеров НК в ячейке

НТнк

11

8

Количество типоразмеров оригинальных НК в ячейке (*)

3

9

Общее количество деталей (кроме НК) (**)

Д

8


 

Определение частных показателей технологичности

Частные показатели технологичности и формулы их расчета приведены в табл. 9.

 

Таблица 9. Определение частных показателей технологичности

№ п/п

Коэффициенты технологичности

Обозначения

Формулы расчёта

Численные значения

1

Коэффициент использования ИС

КИС

0,05

2

Коэффициент автоматизации монтажа

КАМ

0,98

3

Коэффициент автоматизации подготовки ПМК

КАПпмк

1

4

Коэффициент повторяемости ПМК

КПОВпмк

0,98

5

Коэффициент применяемости ПМК

КПпмк

0,27


Функция, нормирующая весовую значимость коэффициентов технологичности, определяется как:



при этом величина i выбирается по числовому значению каждого коэффициента.


    


Результаты расчётов в последовательности, учитывающей весовую значимость, приведены в табл. 10.

 

Таблица 10. Результаты расчёта коэффициентов технологичности с учётом их весомости

Весомость

Коэффициенты технологичности

Обозначения Кi

Численные значения Кi

Численные значения Фi

Численные значения Кi*Фi

1

Коэффициент автоматизации монтажа

КАМ

1

1

1

2

Коэффициент повторяемости НК

КПОВнк

0,98

1

0,98

3

Коэффициент автоматизации подготовки НК

КАПнк

0,98

0,75

0,73

4

Коэффициент применяемости НК

КПнк

0,27

0,5

0,13

5

Коэффициент использования ИС

КИС

0,05

0,31

0,01


åКi*Фi=2,85; åФi=3,23.

Определяем комплексный показатель технологичности:



Нормативный показатель технологичности для мелкосерийного производства ЭУ составляет КН = 0,6 – 0,7. Сравнивая рассчитанный комплексный показатель с нормативным, т.е. К ≥ КН делаем вывод, что разрабатываемое изделие считается высокотехнологичным.

8. Вопросы обеспечения надежности ЭУ


Вопросы, касающиеся обеспечения надежности ЭУ требуют компромиссных решений, что создает серьезные проблемы разработки. Эффективность управления ТП и контроля качества ЭУ снижается по нескольким причинам:

·                    из-за роста числа и значимости факторов, определяющих качество как ПМК, так и ЭУ, что является следствием уменьшения размеров элементов и компонентов ЭУ, так как при этом становятся значимыми несовершенства структуры материалов и самих элементов, микрорельефность, а также физико-химические воздействия границ их поверхностей, процессы взаимодиффузии, электромиграции, капиллярные явления и др.;

·                    из-за влияния конструктивных особенностей ЭУ на выход годных изделий, что является следствием большого разнообразия ПМК и соответственно требований к точности их позиционирования, точности дозировки припоя, количества тепла для его оплавления и т.д.;

·                    из-за снижения полноты проверки СБИС (УБИС) и ЭУ вследствие существенного увеличения наборов комбинаций входных сигналов при тестировании, обеспечивающем полную и достоверную оценку качества их функционирования в условиях все возрастающей трудоемкости контроля;

·                    из-за повышения сложности и разнообразия измерительной оснастки, индивидуальных средств тестирования, а также индивидуальных измерительных программ вследствие расширения сферы применения ЭВС в плохо поддающихся управлению в условиях эксплуатации, что требует поиска новых подходов к обеспечению качества и надежности ЭУ, в том числе в неуправляемых или минимально управляемых условиях эксплуатации.

Мероприятия, необходимые в ТПМ, выполнение которых обеспечивает требуемую надежность:

·                    организация и освоение гибких интегрированных производственных систем с комплексной системой управления качеством изготавливаемых объектов и аттестацией производства;

·                    использование имеющихся интегрированных дискретных компонентов и суперкомпонентов, а также разработка новых позволяющих уменьшить число паяных и сварных соединений в конструктивах ЭУ;

·                    совершенствование имеющихся и разработка новых методов и средств бесконтактного технологического контроля для оценки качества объекта производства на всех его этапах;

·                    разработка общих и индивидуальных встроенных в ЭУ средств самоконтроля, самотестирования и саморегулирования;

·                    использование новых схемотехнических и конструкторско-технологических решений для регулирования тепломассообмена в ЭУ;

·                    широкое использование статистического контроля и моделирования для оценки проектируемой, технологической и эксплуатационной надежности.


Выводы


В рамках курсовой работы был проведен анализ ТП сборки и монтажа ЭУ. На его основе был сделан выбор варианта сборки и монтажа ячейки ИММТ. Проанализировав методы и способы реализации ТП сборки и монтажа, для данной ячейки был произведен выбор технологического оборудования, материалов и технологических сред. Для ячейки ИММТ была проведена разработка общего алгоритма ТП сборки и монтажа и маршрутной карты. Дана оценка технологичности данной ячейки.

Однако, вариант узловой сборки и монтажа ΙΙΙ, г является самым сложным по трудоемкости и дорогостоящим. Для улучшения качества и эксплуатационной надежности рекомендуется все 100% навесных компонентов выбирать только для поверхностного монтажа, что позволит осуществить гибкую автоматизацию всех сборочно-монтажных процессов, используя встроенные средства активного технологического контроля.




Список используемой литературы


1.        Заводян А.В., Грушевский А.М. Поверхностный монтаж для производства высокоплотных электронных средств – М.: МИЭТ, 2006. – 276 с.

2.        Сейсян Р.П. Принципы микроэлектроники. – СПб.: ЛГТУ, 2003. – 110 с.

3.        Технология и автоматизация производства радиоэлектронной аппаратуры. / Под. ред. А.П. Достанко и Ш.М. Чабдарова – М.: Радио и связь, 1989. – 624 с.

4.        Дефекты, возникающие при пайке компонентов поверхностного монтажа // Поверхностный монтаж, №1, 2006. с. 26–27.

5.        Заводян А.В., Волков В.А. Производство перспективных ЭВС: Учебное пособие. Ч. 2 – М.: МИЭТ, 1999. – 280 с.

6.        Мэнгин Ч.Г., Макклелланд С. Технология поверхностного монтажа. Будущее технологии сборки в электронике. – М.: Мир, 1990. – 176 с.

7.        Монтаж на поверхность. Технология. Контроль качества. / Под. ред. И.О. Шурчкова. – М.: Издательство стандартов, 1991. – 184 с.


Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.