Рефераты. Разработка светодиодной матрицы

Общий вид микроконтроллера PIC16F628A изображен на рисунке 2.2, а наименование выводов на рисунке 2.3.

Рисунок 2.2 - Общий вид микроконтроллера PIC16F628A


Рисунок 2.3 – Расположение выводов микроконтроллера PIC16F628A


Рисунок 2.4 – Структурная схема микроконтроллера PIC16F628A


2.4 Разработка функциональной схемы устройства


Зная тип микроконтроллера, согласно п.1.1 разрабатываем функциональную схему светодиодной матрицы (Рис. 2.5).

 


 МК «+»

 3,5-5В

Д

С

т

б

5


 

Д

С

т

б

4


 

Д

С

т

б

3


 

Д

С

т

б

2


 

Д

С

т

б

1


 

ДСтр1

 

ДСтр2

 

ДСтр3

 

ДСтр4

 

ДСтр5

 
 

 





Рисунок 2.5 – Функциональная схема светодиодной матрицы:

ДСтр1- ДСтр5 – драйвер строки;

ДСтб1- ДСтб1- драйвер столбца.


2.5 Разработка алгоритма управления


Мы рассмотрим два случая световых эффектов для светодиодной матрицы.:

1.                 Эффект 1 - движущиеся строки и столбцы;

2.                 Универсальная программа для программирования любых световых эффектов. + пример работы - "вращающийся крест".

Для эффекта 1 алгоритм будет иметь вид, представленный на рисунке 2.6.


Рисунок 2.6 – Алгоритм программы эффекта 1 для светодиодной матрицы


Теперь составим алгоритм для универсальной программы (Рис. 2.7).


Рисунок 2.7 – Алгоритм универсальной программы для светодиодной матрицы


Контроллер управляет драйверами строк и столбцов светодиодной матрицы, в качестве которых выступают обычные биполярные транзисторы.

Чтобы подключить строки 1, 2, 3, 4, 5 к шине питания - нужно подать "1" на выходы контроллера RA2, RA3, RA1, RA7, RA6 соответственно, а для того, чтобы подключить столбцы 1, 2, 3, 4, 5 к нулевой шине (к земле) - нужно подать "0" на выходы контроллера RB3, RB4, RB5, RB6, RB7 соответственно.

Для первого и второго варианта основная проблема нашей матрицы в том, что на ней невозможно включить несколько произвольных светодиодов одновременно в разных строках и столбцах. Однако, в одном столбце (или строке) одновременно включить несколько произвольных светодиодов можно. Но! Если мы будем включать нужные нам светодиоды, например, построчно, при этом очень быстро меняя строки, то для глаза рисунок сольется и будет казаться точно таким же, как если бы мы произвольно включили несколько светодиодов в разных строках и столбцах.

То есть, фактически, картинка показывается за пять циклов: сначала первая строка, потом вторая, потом третья и так далее до пятой строки, после чего все циклы повторяются, но, за счет очень быстрого переключения строк, мы видим один статичный кадр (фрейм) - Рисунок 2.8.


Рисунок 2.8 – Пример фрейма


Так как каждый фрейм у нас состоит из пяти строк, в каждой из которых по пять столбцов, то весь фрейм кодируется 5*5 битами. Для удобства будем использовать один байт на столбец (старшие три бита использовать не будем), итого получим 5 байт на фрейм.

Переключая такие псевдостатичные картинки (но уже с различимой для глаза скоростью) можно получить динамическое изображение. Шесть (к примеру) фреймов для нашей матрицы займут в памяти 5*6=30 байт. Фреймы можно хранить в памяти данных EEPROM. Она имеет размер 128 байт, то есть позволяет хранить до 25 фреймов. Посчитаем: 25*5=125 + 2 байта (для хранения информации о количестве загруженных фреймов и о скорости смены фреймов).

Если соединить контроллер с компьютером через USART, то можно будет загружать фреймы прямо с компьютера.

Светодиод загорается в том случае, если он подключен и к питанию и к земле.

В нашем примере мы будем загружать фреймы из EEPROM в ОЗУ, причём только в нулевой банк, в котором, за вычетом всех пользовательских переменных, на фреймы остается 86 байт, то есть максимум 17 фреймов.

Для реализации динамической картинки "вращающийся крест" нам понадобится 6 фреймов (Рисунок 2.9).


Рисунок 2.9 – Реализация картинки «вращающийся крест»


2.6            Разработка программного обеспечения микроконтроллера


Мы рассмотрим программы для двух случаев, как было описано в п.2.4.

Листинг программы для первого случая (Эффект-1) приведен в Приложении Б, а для эффекта «Вращающийся крест» в Приложении В.


2.7            Выбор, описание и расчеты элементной базы


Рассмотрим принципиальную схему (Приложение Д).

Транзисторы VT1- VT5 - это драйверы строк (в открытом состоянии они подключают соответствующие строки к шине питания), VT6 - VT10 - драйверы столбцов (в открытом состоянии они подключают соответствующие столбцы к земле). Когда на базы транзисторов VT1-VT5 подан высокий уровень ("1") - они открываются, когда низкий ("0") - закрываются. Для транзисторов VT6 - VT10 все наоборот, - когда на базах высокий уровень ("1") - транзисторы закрыты, а когда низкий ("0") - открыты. Если светодиод оказывается подключен и к земле и к питанию - через него начинает протекать ток, и, соответственно, он светится.

Использование драйверов обусловлено тем, что максимальный ток порта ввода/вывода ограничен 25мА, а при полностью включенной строке или столбце суммарный ток светодиодов порядка 50 мА, т.е. мы не можем подключать строки и столбцы непосредственно к выводам контроллера.

Элементы:

R1- R25 = 220 Ом. Эти резисторы являются токоограничивающими (ограничивают токи, протекающие через светодиоды). В общем-то светодиоды бывают разные - у одних номинальный ток 10мА, у других 5 мА, у одних падение 1,5В, у других 2В и т.д. Как в общем случае посчитать номинал токоограничивающего резистора?


RTO=(UПИТ-UD-UTR1-UTR2)/IНОМ,                                                  (2.1)


где UПИТ - напряжение питания,

UD - падение напряжения на светодиоде,

UTR1 - падение напряжения (коллектор-эмиттер) на открытом транзисторе 1 (драйвер строки),

UTR2 - падение напряжения (коллектор-эмитер) на открытом транзисторе 2 (драйвер столбца),

IНОМ - номинальный ток светодиода.

R26 - R35 = 470 Ом. Эти резисторы ограничивают токи баз транзисторов.

R36 = 1 кОм. Резистор, подтягивающий -MCLR к питанию.

С1 = 0,1 мкФ. Конденсатор, фильтрующий ВЧ помехи по питанию контроллера .

VT1 - VT5 = КТ315 (падение напряжения в открытом состоянии 0,4 В);

VT6 - VT10 = КТ361 (падение напряжения в открытом состоянии 0,4 В).

Спецификация элементной базы приведена в Приложении Ж.


2.8            Разработка схемы электрической принципиальной


По имеющемуся набору данных построим электрическую схему светодиодной матрицы в САПР Accel Eda (Рис. 2.10).


Рисунок 2.10 – Схема электрическая принципиальная светодиодной матрицы в САПР Accel Eda


3 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ОБЪЕКТА РАЗРАБОТКИ


В данном разделе проводится технико-экономический расчет стоимости светодиодной матрицы.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.