Рефераты. Разработка систем передачи информации нового поколения

Параметры генератора электрического сигнала, определяемые пользователем:

Upk - Пиковое напряжение выходного электрического сигнала двоичной последовательности =2В;

Umin - Минимальное напряжение выходного электрического сигнала двоичной последовательности =0В;

Тип модели, используемой для генерирования сигнала - On_off_ramp;

F0 - Резонансная частота кольцевого фильтра =20*109 Гц;

Тип фильтра - RingFilter (кольцевой фильтр);

g -излучение: Демпфирование частоты кольцевого фильтра =7.69*109 рад/с;

Тип модуляции - NRZ

Tr - Время нарастания выходного электрического сигнала =40*10-12 с;

Tf - Время спада выходного электрического сигнала =40*10-12 c.

CW лазер

Эта модель производит оптический сигнал с CW лазера и предназначена для использования совместно с моделью модулятора.

Эта модель обеспечивает два различных типа выходного оптического сигнала. Для топологии, в которой модель CW лазера обеспечивает прямой вход к модели модулятора, наиболее удобно представление сигнала по его мощности. Для топологии, в которой выход CW лазера используется как вход к другим составляющим моделям, должно использоваться временное представление сигнала. Чтобы наиболее полно использовать эту возможность должны быть установлены параметры timeStep и noSamples для согласования интенсивности замеров и числа точек в данном сигнале с любыми другими сигналами, с которыми данный сигнал взаимодействует при моделировании.

Пользователь может также установить фазу выходного оптического сигнала.

Параметры лазера, определяемые пользователем:

RIN: Относительный шум интенсивности лазера = -150 дБ/Гц;

PeakPower: Пиковая мощность (средняя мощность для CW лазера) =1*10-3 Вт;

Длина волны: Длина волны, на которой работает лазер =1.55*10-9 м;

Электрооптический модулятор (Modulator)

Эта модель позволяет смоделировать несколько типов модуляторов, включая модулятор Маха-Цендера. При совместном использовании модели модулятора и модели лазера пользователь должен установить одинаковое значение числа точек на бит и разрядной ширины последовательности для моделей генератора двоичной последовательности и лазера с синхронизацией мод.

Параметры электрооптического модулятора, определяемые пользователем:

FittingType: тип электрического модулятора - fOffset;

ModulationType: тип функции реакция модуляции =MachZehender;

UPi Пиковое напряжение модулятора = 2В;

UBias падение напряжения на модуляторе = 1В;

UOffset напряжение смещения модулятора = 0В;

OnOffRatio вымирание или двухпозиционное отношение = 30дБ;

InsertionLoss вносимые потери = потери на волноводе + потери на соединении = 5 дБ;

Foffset смещение частотной характеристики = 16.655 ГГц;

Power показатель степени частотной характеристики = -0.10478;

Coef1 Coef1 в модуляторе = 1;

Coef2 Coef2 в модуляторе = 0.0114841/ГГц;

ChirpFactor параметр "чириканья" для модулятора Маха-Цендера.=0.5;

Оптический мультиплексор (MUX)

Параметры мультиплексора, задаваемые пользователем:

FilterType     Тип фильтра на входе: поддерживающий отдельные типы фильтра - trapezoidal;

FilterSpecMod:      Находятся ли спецификации фильтра в частоте или единицах длины волны - частота

FirstFilterCenter центральная частота (длина волны) фильтра =F1 Гц ( м);

FilterSpacing Зазор между фильтром = DF Гц или м;

FilterBW 3дБ ширина диапазона фильтра в длине волны = BW Гц или м;

FilterBW0dB Установить на 0дБ ширину диапазона для трапеци-идального типа фильтра = 9e9 Гц или м;

FilterFSR      Освободить спектральный диапазон от оптического фильтра Фабри-Перо =100*1010 дБ или м;

Потери Оптические вносимые потери фильтра =6 дБ.

Оптическое волокно (Fiber)

Эта модель вычисляет реакцию сигнала на волокно. При этом принимается во внимание затухание, дисперсия и нелинейность волокна. При использовании одноканального способа мультиплексирования волоконной модели, также принимается во внимание четырехволновое смешивание. При многоканальном способе четырехволновое смешивание не моделируется между отдельными каналами.

Распространение различных WDM-канальных сигналов моделируется следующим уравненем:


(2.1)


Здесь Ai - модуль комплексной амплитуды сигнала i-го канала, ngi - групповая скорость, b2i - коэффициент дисперсии второго порядка, b3i - коэффициент дисперсии третьего порядка, ai - коэффициент поглощения, gRji - коэффициент усиления Рамана в i-м канале, вызванного j-м каналом, gi - параметр нелинейности волокна (gi=2pn2/liAeff), где n2 - коэффициент нелинейности, а Aeff - эффективное поперечное сечение волокна.

Коэффициенты усиления Рамана gRji интерполируются из экспериментальной кривой усиления Рамана кремниевого волокна. Состояния поляризации рассматриваются в равной степени распределенными среди параллельных и перпендикулярных состояний. Коэффициент усиления Рамана отрицательный, если i-й канал имеет более короткую длину волны, чем j-й канал.

Выражение для gRji имеет вид:



, (2.2)


где gRn(lj,li) - интерполируемое усиление Рамана, l0 = 1.0 мкм - длина волны для нормирования кривой усиления Рамана, поскольку расчетные коэффициенты усиления имеют единицу м-1Вт-1, gRmax=0.98×10-13 м/Вт - пиковое усиление Рамана.

Параметры волокна, определяемые пользователем.

Расстояние Длина волокна = 110*103 м;

Диаметр      Диаметр сердцевины = 8 *10-6 м;

Потери Затухание на единицу длины = 0.25 дБ/км;

Beta2 дисперсия групповой скорости = -0.25*10-27 с^2/м;

Beta3 дисперсия групповой скорости = 0.1*10-39 с^2/м;

N1 групповой коэффициент = 1.4682

N2     Коэффициент нелинейности = 3.0*10-20 м^2/Вт.

EDFA усилитель

Это модель блока оптического усилителя, в частности волоконного усилителя с добавками эрбия.

В этой модели EDFA усилителя усиление не зависит от длины волны. Причиной этого частично является зависимость коэффициента усиления от уровня насыщения усилителя, что усложняет моделирование. Коэффициент усиления является значительным фактором при моделировании многоволновых систем со спектральным разделением (WDM). В эту модель включено насыщение усиления при высоких входных мощностях и указанном усилении мощности:



, (2.3)


где G0 - малое усиление мощности сигнала, Psat - выходная мощность насыщения, Pave - общая средняя мощность в волокне.

Усиление G получают как сигнал так и предварительно сгенерированный самопроизвольный шум.

Параметры оптического усилителя EDFA, определяемые пользователем.

Усиление Оптический усилитель (усиление по амплитуде сигнала) = 26дБ;

Psat    Оптическая мощность насыщения усилителя = 18 дБм;

BW Оптический усилитель ASE шумовая ширина диапазона =30*10-9м.

Оптический демультиплексор (DEMUX)

Параметры DEMUX, задаваемые пользователем:

FilterType     Тип фильтра на входе: поддерживающий отдельные типы фильтра - trapezoidal;

FilterSpecMod:      Находятся ли спецификации фильтра в частоте или единицах длины волны - частота

FirstFilterCenter центральная частота (длина волны) фильтра =F1 Гц ( м);

FilterSpacing Зазор между фильтром = DF Гц или м;

FilterBW 3дБ ширина диапазона фильтра в длине волны = BW Гц или м;

FilterBW0dB Установить на 0дБ ширину диапазона для трапеци

идального типа фильтра = 0.8*BW Гц или м;

FilterFSR      Освободить спектральный диапазон от оптического фильтра Фабри-Перо =100*1010 дБ или м;

Потери Оптические вносимые потери фильтра =6 дБ.

Приемник

Это модель оптического приемника и всех его стандартных составляющих. Данная модель преобразует входной оптический сигнал в электрический сигнал, который затем усиливает и фильтрует, а также вычисляет шум в сигнале. Рассмотрим различные части этой модели приемника.

Параметры приёмника, определяемые пользователем:

Pd_deviceCapacitance     Емкость элемента = 50*10-15 Ф;

Pd_layerThickness Толщина Активной Области = 0.5*10-6 м;

Pd_absorptionCoeff Коэффициент поглощения = 0.68*106 1/м;

Pd_reflectivity Отражающая способность в фотодиоде = 0.04;

Pd_quantumEff Квантовая эффективность (КПД) = 0.8

Pd_lossGain Усиление или потери реакции фотодетектора = 0 дБ;

Pd_darkCurrent      Темновой ток = 1*10-6 A

Flt_bandwidth        Фильтр 3dB ширины диапазона = 10*109 Гц;   

Flt_lossGain Усиление фильтра или потери = -3 дБ

Тестер передачи ошибочных битов

Эта модель вычисляет вероятность передачи ошибочных битов (BER) для входного электрический сигнала. Метод вычисления заключается в синхронизации входного электрического сигнала с соответствующим ему первоначальным двоичным сигналом, генерации данных глаза и получении вероятности передачи ошибочных битов. При этом блок BER имеет минимум два входа, на один из которых подаётся электрический сигнал от приемника, а на другой - соответствующий ему двоичный сигнал. Полученные данные могут буть сохранены в файле.

Чтобы улучшить точность вычислений BER, первый бит и последние три бита каждого входного сигнала игнорируются. Это делается для того, чтобы исключить определенные нефизические погрешности, которые могут присутствовать в этих разрядных периодах и которые привели бы к неправильным оценкам BER.

Параметры BER тестора определяемое пользователем:

TimingJitter Выбор времени принятия решения = 0 с;

DecisionLevelJitter Дрожание уровня принятия решений = 0В;

DecisionLevel Пороговое значение решения = 0В;


5.2 Результаты моделирования


В данном разделе представлены результаты моделирования нашей ВОЛС содержащей DWDM мультиплексор и EDFA усилитель.

На выходе источника излучения (CW лазера) мощность сигнала составляет 1мВт (0дбм). На выходе модулятора мощность сигнала составляет 3*10-4Вт, что соответствует ослаблению сигнала на 5дб. На выходе из модуляторов сигналы подаются на оптический мультиплексор, который «сшивает» их в единый сигнал (рис 5.2 глаз-диаграмма (а) и спектрограмма (б)). На спектрограмме видно, что разнос частот между каналами составляет 100 ГГц, каналы расположены в соответствии со стандартным канальным планом.

На выходе мультиплексора мощность сигнала составляет

8*10-5 Вт, т.е. мощность сигнала после мультиплексора уменьшилась на 6 дбм, таким образом модулятор с мультиплексором вносят ощутимые помехи, порядка 11 дбм.

Чтобы компенсировать потерянную мощность сигнала, перед вводом в волокно сигнал усиливаем с помощью усилителя мощности, выполненного на основе EDFA (Erbium - Dopped Fiber Amplifier)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.